Publications by authors named "Toshiyuki Kojo"

Activity of an inwardly rectifying K(+) channel with inward conductance of about 40 pS in cultured human renal proximal tubule epithelial cells (RPTECs) is regulated at least in part by protein phosphorylation and dephosphorylation. In this study, we examined involvement of calcineurin (CaN), a Ca(2+)/calmodulin (CaM)-dependent phosphatase, in modulating K(+) channel activity. In cell-attached mode of the patch-clamp technique, application of a CaN inhibitor, cyclosporin A (CsA, 5 microM) or FK520 (5 microM), significantly suppressed channel activity.

View Article and Find Full Text PDF

The activity of an inwardly rectifying K(+) channel in cultured human renal proximal tubule cells (RPTECs) is stimulated and inhibited by nitric oxide (NO) at low and high concentrations, respectively. In this study, we investigated the effects of IFN-gamma, one of the cytokines which affect the expression of inducible NO synthase (iNOS), on intracellular NO and channel activity of RPTECs, using RT-PCR, NO imaging, and the cell-attached mode of the patch-clamp technique. Prolonged incubation (24 h) of cells with IFN-gamma (20 ng/ml) enhanced iNOS mRNA expression and NO production.

View Article and Find Full Text PDF

Nitric oxide (NO) modulates the activity of an inwardly rectifying K(+) channel in cultured human proximal tubule cells. In this study, we investigated which NO synthase (NOS) isoform(s) was involved in the endogenous production of NO and hence the regulation of channel activity. The patch-clamp experiments using the cell-attached mode showed that a nonselective NOS inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM), suppressed channel activity, whereas a NOS substrate, L-arginine (500 microM), stimulated it.

View Article and Find Full Text PDF