Publications by authors named "Toshiya Takigawa"

Objectives: Cleft palate is a frequent congenital craniofacial malformation of unknown etiology. Transforming growth factor (TGF) β3 is required for palatal shelf fusion. Although TGFβ3 knockout (KO) mice are widely used mouse models for cleft palate, cleft palate phenotypes differ among these mice.

View Article and Find Full Text PDF

The surfaces of oral mucosa are protected from infections by antimicrobial proteins and natural immunoglobulins that are constantly secreted in saliva, serving as principal innate immune defense in the oral cavity. MyD88 is an important adaptor protein for signal transduction downstream of Toll-like receptors and TACI, receptors for regulation of innate immunity and B cell responses, respectively. Although MyD88-mediated signaling has a regulatory role in the intestinal mucosal immunity, its specific role in the oral cavity has remained elusive.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy.

View Article and Find Full Text PDF

The differential distribution of microtubules in osteoclasts in culture was examined by using antibodies against acetylated, tyrosinated, or detyrosinated tubulins. Tyrosinated tubulin was found throughout the cytoplasmic microtubules in all cells examined. An expanding protrusion that contained tyrosinated tubulin but none of the detyrosinated or acetylated form was seen in the immature osteoclasts.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS) is found ubiquitously in the environment, and is known to cause developmental toxicity, including cleft plate (CP). The aim of the present study was to elucidate the mechanism of CP associated with in utero exposure to PFOS in mice. We first examined whether the concentration of PFOS in fetal serum was related to susceptibility to CP.

View Article and Find Full Text PDF

Background: Prenatal exposure to ethanol induces holoprosencephalic malformations in both humans and laboratory animals. However, its teratogenic window for inducing holoprosencephaly is narrow, and the teratogenic mechanism is not well understood. In the present study, we examined the morphological changes in the craniofacial structures of mouse embryos/fetuses at intervals following ethanol treatment and evaluated gene expression patterns in the embryos.

View Article and Find Full Text PDF

Cleft of the secondary palate is one of the most common congenital birth defects in humans. The primary cause of cleft palate formation is a failure of fusion of bilateral palatal shelves, but rupture of the once fused palate has also been suggested to take place in utero. The possibility of post-fusion rupture of the palate in humans has hardly been accepted, mainly because in all the cleft palate cases, the cleft palatal edge is always covered with intact epithelium.

View Article and Find Full Text PDF

The inner ear structures are derived from the otic vesicle (OV) which is formed by thickening and invagination of the otic placode of the surface ectoderm. A number of neuroblasts, which arise from epithelial cells of the otic vesicle, delaminate and differentiate into neurons of the cochleovestibular ganglion (CVG). We have found that transforming growth factor-BEta2 (Tgfbeta2 ) was expressed in the otic epithelium at the OV stages between Embryonic days (E) 9.

View Article and Find Full Text PDF

In vertebrate embryos, neural crest cells emigrate out of the neural tube and contribute to the formation of a variety of neural and nonneural tissues. Some neural crest cells undergo apoptotic death during migration, but its biological significance and the underlying mechanism are not well understood. We carried out an in vitro study to examine how the morphology and survival of cranial neural crest (CNC) cells of the mouse embryo are affected when their actin cytoskeleton or anchorage-dependent cell spreading is perturbed.

View Article and Find Full Text PDF

During fusion of the mammalian secondary palate, it has been suggested that palatal medial edge epithelial (MEE) cells disappear by means of apoptosis, epithelial-mesenchymal transformation (EMT) and epithelial cell migration. However, it is widely believed that MEE cells never differentiate unless palatal shelves make contact and the midline epithelial seam is formed. In order to clarify the potential of MEE cells to differentiate, we cultured single (unpaired) palatal shelves of ICR mouse fetuses by using suspension and static culture methods with two kinds of gas-mixtures.

View Article and Find Full Text PDF

It has been widely accepted that programmed cell death (PCD) is an essential event in palatogenesis and that its failure can result in cleft palate, one of the most common birth defects in the human. However, some conflicting results have been reported concerning the timing of cell death occurring in the fusing palate and therefore the role of PCD in palatal fusion is controversial. In order to clarify whether cell death is indispensable for mammalian palatogenesis, we cultivated the palates of day-13 mouse fetuses in vitro and prevented cell death by treating them with the inhibitors of caspases-1 and -3 or with aurintricarboxylic acid which inhibits the activity of caspase-activated DNase.

View Article and Find Full Text PDF

Day-13 fetal mouse palates (plug day=day 0) were labeled with carbon particles at various sites of palatal shelves and cultivated in a chemically defined medium for up to 48 h. During the culture period, the bilateral palatal shelves came in contact and fused with each other, which simulated in vivo palatogenesis. The carbon study revealed that at the midpalatal region, the medial edge of the palatal shelf elevated to the horizontal plane, elongated toward the midline, and made contact with the medial edge of the opposing shelf.

View Article and Find Full Text PDF