Publications by authors named "Toshiya Fujisato"

Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated.

View Article and Find Full Text PDF

The aim of this study was to determine an in vitro evaluation method that could directly predict in vivo performance of decellularized tissue for cardiovascular use. We hypothesized that key factors for in vitro evaluation would be found by in vitro assessment of decellularized aortas that previously showed good performance in vivo, such as high patency. We chose porcine aortas, decellularized using three different decellularization methods: sodium dodecyl-sulfate (SDS), freeze-thawing, and high-hydrostatic pressurization (HHP).

View Article and Find Full Text PDF

Recent applications of decellularized tissue have included the use of hydrogels for injectable materials and three-dimensional (3D) bioprinting bioink for tissue regeneration. Microvascular formation is required for the delivery of oxygen and nutrients to support cell growth and regeneration in tissues and organs. The aim of the present study was to evaluate the formation of capillary networks in decellularized extracellular matrix (d-ECM) hydrogels.

View Article and Find Full Text PDF

Cells sense and respond to various surface topographies of substrates. Many types of topographical architectures have been developed for understanding cell-extracellular matrix (ECM) interactions and for their application in biomaterials. In the present study, as a topographical surface similar to native tissue, we developed a PDMS replica prepared using the transferring method of the decellularized aorta, which is an ECM assembly, and its cellular behaviors, such as orientation and elongation on it.

View Article and Find Full Text PDF

An blood production system could be an alternative to blood donation. We constructed a hematopoietic microenvironment using decellularized cancellous bones (DCBs) as scaffolds to sustain hematopoietic stem cells and supporting cells. The subcutaneous implantation of DCBs into mice with or without human mesenchymal stem cells (hMSCs) revealed that regardless of the presence of hMSCs DCBs were recellularized by some host cells and induced hematopoiesis.

View Article and Find Full Text PDF

Hybrid small-diameter tubes were fabricated by wrapping decellularized aortic intima-media sheets around a tubular stainless steel mandrel with diameter 4 mm, and then by coating with electrospun segmented polyurethane. The synthetic coat was deposited uniformly to a thickness of about 0.5-3.

View Article and Find Full Text PDF

Objectives: The aim of this research is to investigate the histological and mechanical properties of decellularized aortic intima-media, a promising cardiovascular biomaterial.

Methods: Porcine aortic intima-media was decellularized using two methods: high hydrostatic pressurization (HHP) and sodium dodecyl sulphate (SDS). The histological properties were characterized using haematoxylin and eosin staining and Elastica van Gieson staining.

View Article and Find Full Text PDF

Researchers have attempted to develop efficient antithrombogenic surfaces, and yet small-caliber artificial vascular grafts are still unavailable. Here, we demonstrate the excellent patency of tissue-engineered small-caliber long-bypass grafts measuring 20-30 cm in length and having a 2-mm inner diameter. The inner surface of an acellular ostrich carotid artery was modified with a novel heterobifunctional peptide composed of a collagen-binding region and the integrin α4β1 ligand, REDV.

View Article and Find Full Text PDF

We have succeeded in reducing the calcification of acellular aortas or valves in porcine allogeneic system by removing the DNA and phospholipids, but its further reduction is desirable. Here, the calcification of the acellular tissue was evaluated in rat subcutaneous transplantation model which is known as calcification model. Acellular samples prepared by high-hydrostatic pressure (HHP) protocols with different washing media were implanted and the calcification was monitored under micro-computed tomography for 1 and 3 months.

View Article and Find Full Text PDF

The aim of this study was to assess the suitability of decellularized porcine aorta as a vascular graft material by measuring its permeability to protein. Aorta samples were decellularized by treatment with either high hydrostatic pressurization (HHP) or sodium dodecyl sulfate (SDS). Histological evaluation showed that the structure of an HHP-treated sample was similar to that of an untreated sample, while the structure of an SDS-treated sample was surfactant-damaged.

View Article and Find Full Text PDF

To develop a method for making percutaneous devices that have high biocompatibility and do not induce downgrowth of epidermal cells, we prepared a partial decellularized dermis (DD)/poly(methyl methacrylate) (PMMA) complex (PDPC) with a PMMA rod firmly stabilized inside. The porcine decellularized tissue was chosen because of its high biocompatibility and mechanical properties, and MMA was used because it would adhere firmly to a polymer such as a catheter. The MMA filled the cavities in the dermis and polymerized, anchoring to the collagenous fibrils inside the porcine DD.

View Article and Find Full Text PDF

Pressure treatment has been developed in tissue engineering application. Although the tissue scaffold prepared by a ultrahydrostatic pressure treatment has been reported, an excessive pressure has a potential to disrupt a structure of extracellular matrix through protein denaturation. It is important to understand the suitable low-pressure condition and mechanisms for cell killing.

View Article and Find Full Text PDF

A high hydrostatic pressure method, which can apply over 600 MPa pressure was employed for preparing a hydrogel of poly(vinyl alcohol) (PVA) loaded with heparin. The aim of this study was to fabricate a heparin-PVA hydrogel conduit and evaluate its potential for vascular access. Heparin-PVA complex hydrogel showed suppressed heparin release and prevented clot formation, depending on the molecular weight of the PVA.

View Article and Find Full Text PDF

To develop a soft-to-hard tissue interface, we made a decellularized dermis/poly(methyl methacrylate) (PMMA) complex by soaking the decellularized dermis in methyl methacrylate (MMA) and an initiator, and then polymerizing the MMA. The decellularized tissue was chosen because of its good biocompatibility and the easiness of suturing it, and MMA because of its hard tissue compatibility and wide use in the biomedical field. The MMA filled the cavities in the dermis and polymerized within 10 min.

View Article and Find Full Text PDF

Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles.

View Article and Find Full Text PDF

Decellularized bone/bone marrow was prepared to provide a microenvironment mimicking that of the bone marrow for three-dimensional culture in vitro. Bone/bone marrows were hydrostatically pressed at 980 MPa at 30 °C for 10 min to dismantle the cells. Then, they were washed with EGM-2 and further treated in an 80% EtOH to remove the cell debris and lipid, respectively.

View Article and Find Full Text PDF

To develop an antithrombotic material for preparation of small-diameter vascular graft, we describe a novel method to prepare a poly(vinyl alcohol) (PVA)-heparin hydrogels prepared by high-hydrostatic pressure (HHP, 980 MPa), which is designed for sustained release of heparin. Antithrombogenic test revealed that HHP method would not affect the antithrombin III (ATIII) activity of the released heparin. The distribution of heparin in the polymer matrix was homogeneous than freeze-thawing gel, due to the fast gelling affect of PVA which takes approximately 10 min for gel formation.

View Article and Find Full Text PDF

To prepare acellular corneal scaffold, we used high-hydrostatic pressurization (HHP) to decellularize porcine cornea. The HHP method disrupts cells by hydrostatic pressurization, and then the disrupted cells' components are removed by washing with a cell culture medium. Porcine corneas were hydrostatically pressed at 980 MPa at 10 or 30 degrees C for 10 min to make them opaque.

View Article and Find Full Text PDF

A decellularization method using high-hydrostatic pressure (HHP) technology (>600MPa) is described. The HHP disrupts the cells inside the tissue. The cell debris can be eliminated with a simple washing process, producing clean, decellularized tissue.

View Article and Find Full Text PDF

We have been developing a novel compaction method of plasmid DNA using high pressure technology, and previously found that the size of the plasmid DNA was decreased with increasing the pressurizing-strength and time. In the present study, we investigated the tertiary structural change and the expression behavior of the pressure-compacted plasmid DNA in cell in vitro. When the pressure-compacted plasmid DNA was reacted with restriction enzyme (EcoRI), a large amount of the EcoRI was required to cleave the pressure-compacted plasmid DNA than the non-pressurized plasmid DNA, suggesting that the structural change of plasmid DNA was induced by the pressurization.

View Article and Find Full Text PDF

In this study, we attempted to chemically cross-link decellularized blood vessel tissue and to perform cross-linking with a polymer in order to control its stability and functionalization. For this purpose, we cross-linked tissue by intrahelical, interhelical, and intermolecular cross-linking between the polymer and the collagen helix, which is a component of the native tissue. The intrahelically cross-linked tissue showed weaker stability against heat and degradation caused by collagenase compared to the interhelically cross-linked tissue.

View Article and Find Full Text PDF

In order to investigate the effect of pressure on the tertiary structure of plasmid DNA having the supercoiled and relaxed forms, the solution of plasmid DNA was hydrostatically pressurized at different atmosphere and 40 degrees C for various times. For dynamic light scattering (DLS) measurement of the pressurized plasmid DNA, the hydrodynamic diameters of the super-coiled and relaxed plasmid DNA were decreased with increasing pressure. Also, at constant pressure, a long period of pressure treatment effectively induced the decrease in plasmid DNA.

View Article and Find Full Text PDF

Background: The present study examined whether a bioengineered polyglycolic acid cloth (PGAC) impregnated with bone marrow cells (BMC) improved the function and angiogenesis of the infarcted heart.

Methods And Results: The coronary artery was ligated in Lewis rats and the infarcted area was covered with a PGAC in group 1 (n=8), with a PGAC containing basic-fibroblast growth factor (b-FGF) in group 2 (n=11) and a PGAC containing b-FGF and freshly isolated BMC in group 3 (n=10). In addition, BMC derived from transgenic mice expressing green fluorescent protein (GFP)-BMC were seeded into a PGAC, which was sutured over the infarcted area of C57BL/6 mice (n=5).

View Article and Find Full Text PDF

Rationale: Adrenomedullin, a potent vasodilator peptide, regulates cell growth and survival. However, whether adrenomedullin contributes to lung regeneration remains unknown.

Objectives: To investigate whether adrenomedullin influences the kinetics of bone marrow cells, and whether adrenomedullin promotes regeneration of alveoli and vasculature and thereby improves lung structure and function in elastase-induced emphysema in mice.

View Article and Find Full Text PDF

Background And Aim Of The Study: The remodeling process of the decellularized allograft after implantation remains unclear. Herein, the hemodynamics, recellularization and immunological response of the decellularized allograft were evaluated at four weeks after implantation in a mini-pig model, and compared with a cryopreserved allograft.

Methods: Six porcine pulmonary allografts were harvested from mini-pigs, and cryopreserved for four weeks.

View Article and Find Full Text PDF