The prevalence of end-stage renal disease is increasing worldwide. Malignancies accompanying end-stage renal disease are detected in approximately 120 individuals per 10,000 person-years. Most studies have suggested that end-stage renal disease causes carcinogenesis and promotes tumor development; however, this theory remains questionable.
View Article and Find Full Text PDFCancer cells adopt multiple strategies to escape tumor surveillance by the host immune system and aberrant amino acid metabolism in the tumor microenvironment suppresses the immune system. Among the amino acid-metabolizing enzymes is an L-amino-acid oxidase called interleukin-4 induced 1 (IL4I1), which depletes essential amino acids in immune cells and is associated with a poor prognosis in various cancer types. Although IL4I1 is involved in immune metabolism abnormalities, its effect on the therapeutic efficacy of immune checkpoint inhibitors is unknown.
View Article and Find Full Text PDFThe accumulation of senescent cells is a major cause of age-related inflammation and predisposes to a variety of age-related diseases. However, little is known about the molecular basis underlying this accumulation and its potential as a target to ameliorate the ageing process. Here we show that senescent cells heterogeneously express the immune checkpoint protein programmed death-ligand 1 (PD-L1) and that PD-L1 senescent cells accumulate with age in vivo.
View Article and Find Full Text PDFThe vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis is an essential regulator of angiogenesis and important therapeutic target in cancer. Ramucirumab is an anti-VEGFR2 monoclonal antibody used for the treatment of several cancers. Increased circulating VEGF-A levels after ramucirumab administration are associated with a worse prognosis, suggesting that excess VEGF-A induced by ramucirumab negatively affects treatment efficacy and that neutralizing VEGF-A may improve treatment outcomes.
View Article and Find Full Text PDFPreconditioning with a mild stressor such as fasting is a promising way to reduce severe side effects from subsequent chemo- or radiotherapy. However, the underlying mechanisms have been largely unexplored. Here, we demonstrate that the TP53/p53-FBXO22-TFEB (transcription factor EB) axis plays an essential role in this process through upregulating basal macroautophagy/autophagy.
View Article and Find Full Text PDFTumors consist of heterogeneous cell populations that contain cancer cell subpopulations with anticancer drug-resistant properties called "persister" cells. While this early-phase drug tolerance is known to be related to the stem cell-like characteristic of persister cells, how the stem cell-related pathways contribute to drug resistance has remained elusive. Here, we conducted a single-cell analysis based on the stem cell lineage-related and gastric cell lineage-related gene expression in patient-derived gastric cancer cell models.
View Article and Find Full Text PDFBackground: Tumours consist of heterogeneous cancer cells and are likely to contain drug-tolerant cell subpopulations, causing early relapse. However, treatment strategies to eliminate these cells have not been established.
Methods: We established gastric cancer patient-derived cells (PDCs) to examine the contribution of CD44 splicing variant 9 (CD44v9)-positive cells in gastric cancer drug tolerance.
Long-chain acyl-coenzyme A (CoA) synthetase 3 (ACSL3) is an androgen-responsive gene involved in the generation of fatty acyl-CoA esters. ACSL3 is expressed in both androgen-sensitive and castration-resistant prostate cancer (CRPC). However, its role in prostate cancer remains elusive.
View Article and Find Full Text PDFBladder cancer is the most common malignant tumor of the urothelium and is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Stemness markers such as SOX2 and NANOG are frequently overexpressed in various aggressive cancers, including MIBC; epithelial-mesenchymal transition (EMT) has been proposed as a potential trigger of stemness in cancers. To determine whether cancer stemness is acquired via EMT in bladder cancer, we studied the effect of EMT on the expression of SOX2 and NANOG in bladder cancer cell lines.
View Article and Find Full Text PDFTankyrase, a PARP that promotes telomere elongation and Wnt/β-catenin signaling, has various binding partners, suggesting that it has as-yet unidentified functions. Here, we report that the tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton and cancer cell invasion, which is closely associated with cancer progression. TNKS1BP1 colocalized with actin filaments and negatively regulated cell invasion.
View Article and Find Full Text PDFGenetic mutations of steroidogenic factor 1 (also known as Ad4BP or Nr5a1) have increasingly been reported in patients with 46,XY disorders of sex development (46,XY disorders of sex development). However, because the phenotype of 46,XY disorders of sex development with a steroidogenic factor 1 mutation is wide-ranging, its precise diagnosis remains a clinical problem. We previously reported the frequent occurrence of lipid accumulation in Leydig cells among patients with 46,XY disorders of sex development with a steroidogenic factor 1 mutation, an observation also reported by other authors.
View Article and Find Full Text PDFAntizyme (AZ) regulates cellular polyamines (i.e., putrescine, spermidine, and spermine) through binding to ornithine decarboxylase and subsequent ubiquitin-independent degradation of the enzyme protein by the 26S proteasome.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2016
Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo.
View Article and Find Full Text PDFInt J Mol Sci
December 2015
Bladder cancer (BC), the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases.
View Article and Find Full Text PDFEndocrine therapy is the standard treatment for advanced prostate cancer; however, relapse occurs in most patients with few treatment options available after recurrence. To overcome this therapeutic hurdle, the identification of new molecular targets is a critical issue. The capability to proliferate in three-dimensional (3D) conditions is a characteristic property of cancer cells.
View Article and Find Full Text PDFDe novo lipogenesis is activated in most cancers and several lipogenic enzymes have been implicated as therapeutic targets. Here, we demonstrate a novel function of the lipogenic enzyme, ATP citrate lyase (ACLY), in lipid metabolism in cancer cells. ACLY depletion by small interfering RNAs caused growth suppression and/or apoptosis in a subset of cancer cell lines.
View Article and Find Full Text PDFLimitless reproductive potential is one of the hallmarks of cancer cells. This ability is due to the maintenance of telomeres, erosion of which causes cellular senescence or death. While most cancer cells activate telomerase, a telomere-elongating enzyme, it remains elusive as to why cancer cells often maintain shorter telomeres than the cells in the surrounding normal tissues.
View Article and Find Full Text PDFDe novo lipogenesis is activated in most cancers. Inhibition of ATP citrate lyase (ACLY), the enzyme that catalyzes the first step of de novo lipogenesis, leads to growth suppression and apoptosis in a subset of human cancer cells. Herein, we found that ACLY depletion increases the level of intracellular reactive oxygen species (ROS), whereas addition of an antioxidant reduced ROS and attenuated the anticancer effect.
View Article and Find Full Text PDFThe classical view of the Golgi apparatus is of a small membranous organelle involved in protein transport and secretion. Recent descriptions of the molecular network connecting the Golgi to other organelles demonstrate the essential roles of the Golgi in cellular activities as a stress sensor, apoptosis trigger, lipid/protein modifier, mitotic checkpoint, and a mediator of malignant transformation. Thus, the Golgi function should have a fundamental impact on cancer cell survival.
View Article and Find Full Text PDFInsulin-like growth factor (IGF) signaling plays a pivotal role in cell proliferation and mitogenesis. Secreted IGF-binding proteins (IGFBPs) are important modulators of IGF bioavailability; however, their intracellular functions remain elusive. We sought to assess the antiapoptotic properties of intracellular IGFBP-2 in lung adenocarcinomas.
View Article and Find Full Text PDFGastric cancer is the second common malignant neoplasia in Japan, and its poorly differentiated form is a deadly disease. To identify novel candidate oncogenes contributing to its genesis, we examined copy-number alterations in 50 primary poorly differentiated gastric cancers using an array-based comparative genomic hybridization (array-CGH). Many genetic changes were identified, including a novel amplification of the 13q22 locus.
View Article and Find Full Text PDFBackground: Overexpression of the fatty acid synthase (FASN) gene has been implicated in prostate carcinogenesis. We sought to directly assess the oncogenic potential of FASN.
Methods: We used immortalized human prostate epithelial cells (iPrECs), androgen receptor-overexpressing iPrECs (AR-iPrEC), and human prostate adenocarcinoma LNCaP cells that stably overexpressed FASN for cell proliferation assays, soft agar assays, and tests of tumor formation in immunodeficient mice.
Purpose: To determine the incidence of Xp11 translocation renal cell carcinoma (RCC) in adult patients using cytogenetics and immunohistochemstry.
Experimental Design: Cytogenetic studies were prospectively done using tumor samples from 443 consecutive adult Japanese patients (ages 15-89 years) who underwent nephrectomy for RCC. TFE3 immunohistochemistry was done for cases in which cytogenetic results were not obtained.
Enhanced glucose and lipid metabolism is one of the most common properties of malignant cells. ATP citrate lyase (ACLY) is a key enzyme of de novo fatty acid synthesis responsible for generating cytosolic acetyl-CoA and oxaloacetate. To evaluate its role in lung cancer progression, we here analyzed ACLY expression in a subset of human lung adenocarcinoma cell lines and showed a relationship with the phosphatidyl-inositol-3 kinase-Akt pathway.
View Article and Find Full Text PDFFatty acid synthase (FASN), a key metabolic enzyme for liponeogenesis highly expressed in several human cancers, displays oncogenic properties such as resistance to apoptosis and induction of proliferation when overexpressed. To date, no mechanism has been identified to explain the oncogenicity of FASN in prostate cancer. We generated immortalized prostate epithelial cells (iPrECs) overexpressing FASN, and found that (14)C-acetate incorporation into palmitate synthesized de novo by FASN was significantly elevated in immunoprecipitated Wnt-1 when compared to isogenic cells not overexpressing FASN.
View Article and Find Full Text PDF