Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules (PTs) purified from patients with diabetic nephropathy and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2024
We previously reported that solute carrier family 22 member 18 (Slc22a18) regulates lipid accumulation in 3T3-L1 adipocytes. Here, we provide additional evidence derived from experiments with adenoviral vector expression and genetic manipulation of mice. In primary cultured rat hepatocytes, adenoviral overexpression of mouse Slc22a18 increased triglyceride accumulation and triglyceride synthetic activity, which was decreased in an adenoviral knockdown experiment.
View Article and Find Full Text PDFSalt-sensitive hypertension (SS-HT) is characterized by blood pressure elevation in response to high dietary salt intake and is considered to increase the risk of cardiovascular and renal morbidity. Although the mechanisms responsible for SS-HT are complex, the kidneys are known to play a central role in the development of SS-HT and the salt sensitivity of blood pressure (SSBP). Moreover, several factors influence renal function and SSBP, including the renin-angiotensin-aldosterone system, sympathetic nervous system, obesity, and aging.
View Article and Find Full Text PDFThis review highlights recent insights into the epigenetic mechanism of salt-sensitive hypertension from the fetus to the elderly population, mainly focusing on the DNA methylation and histone modification-mediated regulation of hypertension-associated genes. Maternal malnutrition during pregnancy induces upregulation of (angiotensin receptor 1a) by aberrant DNA methylation, and increased AT1A activity in the hypothalamus develops prenatally programmed salt-sensitive hypertension through renal sympathetic overactivity. In addition, maternal lipopolysaccharide exposure during pregnancy induces upregulation of the gene through histone modification by H3K9me2 across generations, resulting in salt-induced activation of the Rac1-MR (mineralocorticoid receptor) pathway in the kidney and the development of salt-sensitive hypertension in F4 and F5 offspring.
View Article and Find Full Text PDFDevelopment of the renal medulla continues after birth to form mature renal papilla and obtain urine-concentrating ability. Here, we found that a small GTPase, Rac1, plays a critical role in the postnatal development of renal papilla. Mice with distal tubule-specific deletion of Rac1 reached adulthood but showed polydipsia and polyuria with an impaired ability to concentrate urine.
View Article and Find Full Text PDFA high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers.
View Article and Find Full Text PDFDietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension.
View Article and Find Full Text PDFJ Am Soc Nephrol
February 2021
Hypertension and its comorbidities pose a major public health problem associated with disease-associated factors related to a modern lifestyle, such high salt intake or obesity. Accumulating evidence has demonstrated that aldosterone and its receptor, the mineralocorticoid receptor (MR), have crucial roles in the development of salt-sensitive hypertension and coexisting cardiovascular and renal injuries. Accordingly, clinical trials have repetitively shown the promising effects of MR blockers in these diseases.
View Article and Find Full Text PDFWe conducted a multicenter, randomized, double-blind, placebo-controlled, phase IIb/III study (CASSIOPEIR) using a renal composite endpoint (i.e., doubling of SCr or end-stage renal disease) in seven Asian countries/region.
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
September 2020
Introduction: Renal tubular injury contributes to the decline in kidney function in patients with diabetes. Cell type-specific DNA methylation patterns have been used to calculate proportions of particular cell types. In this study, we developed a method to detect renal tubular injury in patients with diabetes by detecting exfoliated tubular cells shed into the urine based on tubular cell-specific DNA methylation patterns.
View Article and Find Full Text PDFAging is associated with a high prevalence of hypertension due to elevated susceptibility of BP to dietary salt, but its mechanism is unknown. Serum levels of Klotho, an anti-aging factor, decline with age. We found that high salt (HS) increased BP in aged mice and young heterozygous Klotho-knockout mice and was associated with increased vascular expression of Wnt5a and p-MYPT1, which indicate RhoA activity.
View Article and Find Full Text PDFTo investigate the cause of salt sensitivity in a normotensive animal model, we treated rats with a low-dose of the nitric oxide synthase inhibitor, L-NAME, that does not elevate blood pressure per se or induce kidney fibrosis. A high salt diet increased the circulating blood volume both in L-NAME-treated and nontreated animals for the first 24 hours. Thereafter, the blood volume increase persisted only in the L-NAME-treated rats.
View Article and Find Full Text PDFRenal inflammation is known to be involved in salt-induced renal damage, leading to end-stage renal disease. This study aims to evaluate the role of inflammation in anti-inflammatory and renoprotective effects of beraprost sodium (BPS), a prostaglandin I (PGI) analog, in Dahl salt-sensitive (DS) rats. Five-week-old male DS rats were fed a normal-salt diet (0.
View Article and Find Full Text PDFBackground: Regulation of sodium chloride transport in the aldosterone-sensitive distal nephron is essential for fluid homeostasis and BP control. The chloride-bicarbonate exchanger pendrin in -intercalated cells, along with sodium chloride cotransporter (NCC) in distal convoluted tubules, complementarily regulate sodium chloride handling, which is controlled by the renin-angiotensin-aldosterone system.
Methods: Using mice with mineralocorticoid receptor deletion in intercalated cells, we examined the mechanism and roles of pendrin upregulation mineralocorticoid receptor in two different models of renin-angiotensin-aldosterone system activation.
Hypertens Res
December 2019
The currently available data have indicated that dietary salt is directly correlated with blood pressure (BP) and the occurrence of hypertension. However, the salt sensitivity of BP is different in each individual. Genetic factors and environmental factors influence the salt sensitivity of BP.
View Article and Find Full Text PDFWe have previously shown that podocyte injury increases the glomerular filtration of liver-derived Agt (angiotensinogen) and the generation of intrarenal Ang II (angiotensin II) and that the filtered Agt is reabsorbed by proximal tubules in a manner dependent on megalin. In the present study, we aimed to study the role of megalin in the generation of renal Ang II and sodium handling during nephrotic syndrome. We generated proximal tubule-specific megalin KO (knockout) mice and crossed these animals with NEP25 mice, in which podocyte-specific injury can be induced by injection of the immunotoxin LMB2.
View Article and Find Full Text PDFBackground: Mechanisms underlying the frequent association between salt-sensitive hypertension and type 2 diabetes remain obscure. We previously found that protein kinase C (PKC) activation phosphorylates Kelch-like 3 (KLHL3), an E3 ubiquitin ligase component, at serine 433. We investigated whether impaired KLHL3 activity results in increased renal salt reabsorption NaCl cotransporter (NCC).
View Article and Find Full Text PDFExcessive dietary salt intake can counteract the renoprotective effects of renin-angiotensin system (RAS) blockade in hypertensive patients with chronic kidney disease (CKD). In rodents, salt loading induces hypertension and renal damage by activating the mineralocorticoid receptor (MR) independently of plasma aldosterone levels. Thus, high salt-induced resistance to RAS blockade may be mediated by MR activation.
View Article and Find Full Text PDFDistal nephron of the kidney plays key roles in fluid volume and electrolyte homeostasis by tightly regulating reabsorption and excretion of Na, K, and Cl Studies to date demonstrate the detailed electrolyte transport mechanisms in principal cells of the cortical collecting duct, and their regulation by renin-angiotensin-aldosterone system (RAAS). In recent years, however, accumulating data indicate that intercalated cells, another cell type that is present in the cortical collecting duct, also play active roles in the regulation of blood pressure. Notably, pendrin in β-intercalated cells not only controls acid/base homeostasis, but is also one of the key components controlling salt and K transport in distal nephron.
View Article and Find Full Text PDFEpigenetic modulation may underlie the progression of diabetic nephropathy (DN). Involvement of TGFB1 in mesangial fibrosis of DN led us to hypothesize that Tgfb1 DNA demethylation contributes to progression of DN. In primary mesangial cells from diabetic (db/db) mouse kidneys, demethylation of Tgfb1 DNA and upregulation of Tgfb1 mRNA progressed simultaneously.
View Article and Find Full Text PDFMaternal malnutrition, which causes prenatal exposure to excessive glucocorticoid, induces adverse metabolic programming, leading to hypertension in offspring. In offspring of pregnant rats receiving a low-protein diet or dexamethasone, a synthetic glucocorticoid, mRNA expression of angiotensin receptor type 1a (Agtr1a) in the paraventricular nucleus (PVN) of the hypothalamus was upregulated, concurrent with reduced expression of DNA methyltransferase 3a (Dnmt3a), reduced binding of DNMT3a to the Agtr1a gene, and DNA demethylation. Salt loading increased BP in both types of offspring, suggesting that elevated hypothalamic Agtr1a expression is epigenetically modulated by excessive glucocorticoid and leads to adult-onset salt-sensitive hypertension.
View Article and Find Full Text PDFMineralocorticoid receptor (MR) signaling regulates both renal Na-Cl reabsorption and K excretion. We previously demonstrated that phosphorylation of S843 in the MR ligand-binding domain in renal intercalated cells is involved in the balance of these activities by regulating ligand binding and signaling. However, the kinase that phosphorylates MR is unknown.
View Article and Find Full Text PDF