Publications by authors named "Toshio Hanada"

Apple has a transcription factor with MADS domain. Moreover, it is expressed specifically at petals and carpels. The product forms a dimer with () protein as a class B gene for floral organ formation.

View Article and Find Full Text PDF

Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation.

View Article and Find Full Text PDF

Self-compatibility has become the primary objective of most almond (Prunus amygdalus Batsch) breeding programmes in order to avoid the problems related to the gametophytic self-incompatibility system present in almond. The progeny of the cross 'Vivot' (S(23)S(fa)) x 'Blanquerna' (S(8)S(fi)) was studied because both cultivars share the same S(f) allele but have a different phenotypic expression: active (S(fa)) in 'Vivot' and inactive (S(fi)) in 'Blanquerna'. In addition, the microscopic observation of pollen tube growth after self-pollination over several years showed an unexpected self-incompatible behaviour in most seedlings of this cross.

View Article and Find Full Text PDF

Although recent findings suggest that the F-box genes SFB/SLF control pollen-part S specificity in the S-RNase-based gametophytic self-incompatibility (GSI) system, how these genes operate in the system is unknown, and functional variation of pollen S genes in different species has been reported. Here, we analyzed the S locus of two species of Maloideae: apple (Malus domestica) and Japanese pear (Pyrus pyrifolia). The sequencing of a 317-kb region of the apple S9 haplotype revealed two similar F-box genes.

View Article and Find Full Text PDF

This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S (1), S (2), and S (2m), found in this study encode mutated pollen determinants, SFB, while only S (2m) has a mutation that affects the function of the pistil determinant S-RNase. A cysteine residue in the C5 domain of the S (2m)-RNase is substituted by a tyrosine residue, thereby reducing RNase stability.

View Article and Find Full Text PDF