Brain injuries, such as ischemic stroke, cause cell death. Although phagocytosis of cellular debris is mainly performed by microglia/macrophages (MGs/MΦs), excessive accumulation beyond their phagocytic capacities results in waste product buildup, delaying brain cell regeneration. Therefore, it is essential to increase the potential for waste product removal from damaged brains.
View Article and Find Full Text PDFIncreasing evidence shows that the administration of mesenchymal stem cells (MSCs) is a promising option for various brain diseases, including ischemic stroke. Studies have demonstrated that MSC transplantation after ischemic stroke provides beneficial effects, such as neural regeneration, partially by activating endogenous neural stem/progenitor cells (NSPCs) in conventional neurogenic zones, such as the subventricular and subgranular zones. However, whether MSC transplantation regulates the fate of injury-induced NSPCs (iNSPCs) regionally activated at injured regions after ischemic stroke remains unclear.
View Article and Find Full Text PDFWe recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO).
View Article and Find Full Text PDFRehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment.
View Article and Find Full Text PDFThe structural plasticity of dendritic spines serves as the adaptive capabilities of the central nervous system to various stimuli. Among these stimuli, cerebral ischemia induces dynamic alterations in neuronal network activity. Arcadlin/Paraxial protocadherin/Protocadherin-8 (Acad), a regulator of dendritic spine density, is strongly induced by activating stimuli to the neurons.
View Article and Find Full Text PDFCerebral infarction causes motor, sensory, and cognitive impairments. Although rehabilitation enhances recovery of activities of daily living after cerebral infarction, its mechanism remains elusive due to the lack of reproducibility and low survival rate of brain ischemic model animals. Here, to investigate the relationship between rehabilitative intervention, motor function, and pathophysiological remodeling of the tissue in the ipsilateral hemisphere after cerebral infarction, we took advantage of a highly reproducible model of cerebral infarction using C.
View Article and Find Full Text PDFIndigo Naturalis, also known as Qing Dai (QD) is a compound obtained from Indigofera tinctoria, Isatis tinctoria, and Polygonum tinctoria and is known to ameliorate refractory ulcerative colitis (UC) by an unknown mechanism. QD maintains both homeostasis and the integrity of colon epithelia in mice that have experimentally induced colitis. The primary component of QD, indigo, comprises 42.
View Article and Find Full Text PDFThe neural network undergoes remodeling in response to neural activity and interventions, such as antidepressants. Cell adhesion molecules that link pre- and post-synaptic membranes are responsible not only for the establishment of the neural circuitry, but also for the modulation of the strength of each synaptic connection. Among the various classes of synaptic cell adhesion molecules, a non-clustered protocadherin, Arcadlin/Paraxial protocadherin/Protocadherin-8 (Acad), is unique in that it is induced quickly in response to neural activity.
View Article and Find Full Text PDFIschemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia.
View Article and Find Full Text PDFQing Dai/Indigo Naturalis (QD) has been shown to ameliorate ulcerative colitis (UC) in clinical trials; however, its mechanism remains elusive. This study investigates the effects of QD on murine dextran sulfate sodium salt-induced colitis. Oral administration of QD protected the animals from colitis as manifested by weight loss, diarrhea, and rectal bleeding.
View Article and Find Full Text PDFThe monoamine hypothesis does not fully explain the delayed onset of recovery after antidepressant treatment or the mechanisms of recovery after electroconvulsive therapy (ECT). The common mechanism that operates both in ECT and monoaminergic treatment presumably involves molecules induced in both of these conditions. A spine density modulator, Arcadlin (Acad), the rat orthologue of human Protocadherin-8 (PCDH8) and of Xenopus and zebrafish Paraxial protocadherin (PAPC), is induced by both electroconvulsive seizure (ECS) and antidepressants; however, its cellular mechanism remains elusive.
View Article and Find Full Text PDFLymphangiogenesis plays important roles in normal fetal development and postnatal growth. However, its molecular regulation remains unclear. Here, we have examined the function of forkhead box protein O1 (FOXO1) transcription factor, a known angiogenic factor, in developmental dermal lymphangiogenesis using endothelial cell-specific FOXO1-deficient mice.
View Article and Find Full Text PDFInteractions between Sema4D and its receptors, PlexinB1 and CD72, induce various functions, including axon guidance, angiogenesis, and immune activation. Our previous study revealed that Sema4D is involved in the upregulation of nitric oxide production in microglia after cerebral ischemia. In this study, we investigated the underlying mechanisms of the enhancement of microglial nitric oxide production by Sema4D.
View Article and Find Full Text PDFCerebral ischemia induces neuroinflammation and microglial activation, in which activated microglia upregulate their proliferative activity and change their metabolic states. In activated microglia, l-arginine is metabolized competitively by inducible nitric oxide synthase (iNOS) and arginase (Arg), which then synthesize NO or polyamines, respectively. Our previous study demonstrated that Sema4D deficiency inhibits iNOS expression and promotes proliferation of ionized calcium-binding adaptor molecule 1 (Iba1)-positive (Iba1+) microglia in the ischemic cortex, although the underlying mechanisms were unclear.
View Article and Find Full Text PDFSprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched.
View Article and Find Full Text PDFThe state of microglial activation provides important information about the central nervous system. However, a reliable index of microglial activation in histological samples has yet to be established. Here, we show that microglial activation induces topological changes of Iba1 localization that can be detected by analysis based on homology theory.
View Article and Find Full Text PDFSema4D, originally identified as a negative regulator of axon guidance during development, is involved in various physiological and pathological responses. In this study, we evaluated the effect of Sema4D-deficiency on oligodendrocyte restoration after the cerebral ischemia/reperfusion using direct ligation of the middle cerebral artery followed by reperfusion. In both Sema4D(+/+) wild-type and Sema4D(-/-) null mutant mice, the peri-infarct area showed a decrease in the number of oligodendrocytes at 3 days post-reperfusion.
View Article and Find Full Text PDFCerebral ischemia evokes neuroinflammatory response. Inflammatory stimulation induces microglial activation, such as changes of their morphology from ramified to ameboid, expression of iNOS and cytokines, and the elevation of proliferative activity. Activated microglia play important roles in pathogenesis of cerebral ischemia.
View Article and Find Full Text PDF