Publications by authors named "Toshinori Mori"

Patients with poorly differentiated endometrial cancer show poor prognosis, and effective molecular target-based therapies are needed. Endometrial cancer cells proliferate depending on the activation of HES1 (hairy and enhancer of split-1), which is induced by several pathways, such as the Notch and fibroblast growth factor receptor (FGFR) signaling pathways. In addition, aberrant, ligand-free activation of the FGFR signaling pathway resulting from mutations in FGFR2 was also reported in endometrial cancer.

View Article and Find Full Text PDF

We succeeded in achieving visible-light responsiveness on a tubular TiO(2) sample through the treatment of a tubular TiO(2) that has a large surface area with an aqueous solution of ammonia or triethylamine at room temperature and subsequent calcination at 623 K, which produced a nitrided tubular TiO(2) sample. It was found that the ease of nitridation is dependent on the surface states; washing the tubular TiO(2) sample with an aqueous acidic solution is very effective and indispensable. This treatment causes the appearance of acidic sites on the tubular TiO(2), which was proved by the following experiments: NH(3) temperature-programmed desorption and two types of organic reactions exploiting the acid properties.

View Article and Find Full Text PDF

For alkali-metal ion-exchanged ZSM-5 zeolites (MZSM-5; M: Li, Na, K, Rb, Cs) the analysis of ion-exchangeable sites was performed by means of a combined method based on IR spectroscopic and calorimetric measurements using CO as the probe molecule. The heat of adsorption of CO was found to be correlated with an IR frequency of stretching vibration of C-O in the adsorbed species. It was revealed that there exists at least two types of sites capable of ion-exchanging; for the lithium ion-exchanged ZSM-5 (LiZSM-5) CO adsorption on each type of site is evaluated to give a set of IR bands and heats of adsorption, 2195 cm(-1) and 49 kJ mol(-1), 2185 cm(-1) and 39 kJ mol(-1) with the aid of the newly developed method utilizing the data obtained from a combined microcalorimetric and IR-spectroscopic study.

View Article and Find Full Text PDF

A silver-ion-exchanged HZSM-5 zeolite sample (Ag(H)ZSM-5) evacuated at 573 K exhibited prominent catalytic behavior in the partial oxidation of CH(4) at temperatures above 573 K, exceeding the performance of Ag/SiO(2)Al(2)O(3) and Ag/SiO(2) catalysts. From the infrared (IR) and X-ray absorption fine structure (XAFS) spectra, as well as the dioxygen adsorption measurement, it was concluded that the simultaneous existence of Ag(+) ions and small clusters of Ag particles leads to the partial oxidation of methane. Taking the magnitude of the formation enthalpy (per oxygen atom) of Ag(2)O (DeltaH=26 kJ/mol) into consideration, we propose the interpretation that the dioxygen activated on small Ag metal clusters formed in ZSM-5 elaborates a surface oxide layer on small Ag clusters and the thus-formed species is simultaneously and easily decomposed at 573 K or above, and the oxygen activated in this way on the Ag metal spills over and can react with methane that has been activated by the Ag(+) ions exchanged in ZSM-5, resulting in the high catalytic activity of the Ag(H)ZSM-5 sample in the partial oxidation of methane.

View Article and Find Full Text PDF

Three different approaches have been used to characterize the state of exchanged copper ions in copper-ion-exchanged MFI (CuMFI) samples. (1) Two types of an ion-exchangeable site with different adsorption properties for N(2) or CO molecules were identified depending on the pre-treatment temperature (723 or 873 K) of a sample prepared by using an aqueous solution of CuCl(2). (2) The state of the active sites formed by the evacuation of a sample at 873 K that had been prepared using a mixture solution of aqueous NH(4)CH(3)COO and Cu(CH(3)COO)(2) was analysed utilizing both (13)C(18)O and (12)C(16)O to identify the two types of active adsorption sites for CO molecules.

View Article and Find Full Text PDF
Article Synopsis
  • - A rare case of a cutaneous mixed tumor was identified in a 67-year-old Japanese male, located in the subcutaneous tissue of the cheek, away from the parotid gland.
  • - The tumor displayed a mix of adipose tissue, fibromyxoid tissue, and hair follicular structures, featuring branching ducts and keratinous cysts.
  • - This case is noted as the first instance of a lipomatous mixed tumor with hair follicular differentiation, expanding the understanding of the histological variations of cutaneous mixed tumors.
View Article and Find Full Text PDF

The effect of confinement on the phase changes and dynamics of acetonitrile in mesoporous MCM-41 was studied by use of adsorption, FT-IR, DSC, and quasi-elastic neutron scattering (QENS) measurements. Acetonitrile molecules in a monolayer interact strongly with surface hydroxyls to be registered and perturb the triple bond in the C[triple bond]N group. Adsorbed molecules above the monolayer through to the central part of the cylindrical pores are capillary condensed molecules (cc-acetonitrile), but they do not show the hysteresis loop in adsorption-desorption isotherms, i.

View Article and Find Full Text PDF

Active reaction centers for ammonia on titanium oxyhydroxide were explored to direct the search for an efficient sol-gel method for the synthesis of a titanium oxynitride (TiO2-xNx) sample with an efficient responsiveness to the visible light constituting a main part of the solar spectrum. The results lead to the conclusion that the site giving IR bands at around 2195 cm(-1) for the adsorbed CO molecules at 300 K is a reactive site and behaves as Lewis acid site in the coordination environment of distorted five-coordinate Ti4+ ions. Ammonia molecules are adsorbed on such a site to form -NH2 and -OH species during the heat treatments at a temperature above 373 K, and they are ultimately incorporated into the TiO2 lattice as nitride through the dehydration at higher temperatures of up to 723 K, resulting in the formation of an anatase type of TiO2-xNx.

View Article and Find Full Text PDF