Background: Several HER2-targeting antibody-drug conjugates (ADC) have gained market approval for the treatment of HER2-expressing metastasis. Promising responses have been reported with the new generation of ADCs in patients who do not respond well to other HER2-targeting therapeutics. However, these ADCs still face challenges of resistance and/or severe adverse effects associated with their particular payload toxins.
View Article and Find Full Text PDFBackground: The main function of folate receptor α (FOLRα) has been considered to mediate intracellular folate uptake and induce tumor cell proliferation. Given the broad spectrum of expression among malignant tumors, including gastric cancer (GC) but not in normal tissue, FOLRα represents an attractive target for tumor-selective drug delivery. However, the efficacy of anti-FOLRα monoclonal antibodies (mAbs) has not been proved so far, with the reason for this failure remaining unclear, raising the need for a better understanding of FOLRα function.
View Article and Find Full Text PDFThe antibody-drug conjugate (ADC) MORAb-202, consisting of farletuzumab paired with a cathepsin B-cleavable linker and eribulin, targets folate receptor alpha (FRA), which is frequently overexpressed in various tumor types. MORAb-202 was highly cytotoxic to FRA-positive cells in vitro, with limited off-target killing of FRA-negative cells. Furthermore, MORAb-202 showed a clear in vitro bystander cytotoxic effect in coculture with FRA-positive/negative cells.
View Article and Find Full Text PDFThe Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between β-catenin and CREB binding protein, which is part of the Wnt/β-catenin signaling pathway, disrupts the Wnt/β-catenin signaling pathway in HEK293 and adenomatous polyposis coli ()-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of mice, in which mutation of activates the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDFMicrotubule-targeting agents (MTA) have been investigated for many years as payloads for antibody-drug conjugates (ADC). In many cases, these ADCs have shown limited benefits due to lack of efficacy or significant toxicity, which has spurred continued investigation into novel MTA payloads for next-generation ADCs. In this study, we have developed ADCs using the MTA eribulin, a derivative of the macrocyclic polyether natural product halichondrin B, as a payload.
View Article and Find Full Text PDFBackground: Eribulin is used in many countries to treat patients with advanced breast cancer or liposarcoma and exerts in vivo anticancer activity under monotherapy conditions against various human tumor xenograft models. Here, eribulin in combination with mechanistically different anticancer agents was evaluated.
Materials And Methods: Eribulin was combined with cytotoxic agents (capecitabine, carboplatin, cisplatin, doxorubicin, gemcitabine) or targeted agents (bevacizumab, BKM-120, E7449, erlotinib, everolimus, lenvatinib, palbociclib) in tumor xenograft models of breast cancer, melanoma, non-small cell lung cancer (NSCLC), and ovarian cancer.
The FGFR signaling pathway has a crucial role in proliferation, survival, and migration of cancer cells, tumor angiogenesis, and drug resistance. FGFR genetic abnormalities, such as gene fusion, mutation, and amplification, have been implicated in several types of cancer. Therefore, FGFRs are considered potential targets for cancer therapy.
View Article and Find Full Text PDFApratoxin A is a natural product with potent antiproliferative activity against many human cancer cell lines. However, we and other investigators observed that it has a narrow therapeutic window in vivo Previous mechanistic studies have suggested its involvement in the secretory pathway as well as the process of chaperone-mediated autophagy. Still the link between the biologic activities of apratoxin A and its in vivo toxicity has remained largely unknown.
View Article and Find Full Text PDFNatural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation.
View Article and Find Full Text PDFMost non-small-cell lung cancers (NSCLCs) harboring activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to EGFR tyrosine kinase inhibitors (EGFR-TKIs); however, they invariably develop resistance to these drugs. E7820 is an angiogenesis inhibitor that decreases integrin-α2 expression and is currently undergoing clinical trials. We investigated whether E7820 in combination with erlotinib, an EGFR-TKI, could overcome EGFR-TKI-resistance in the NSCLC cell lines A549 (KRAS; G12S), H1975 (EGFR; L858R/T790M), and H1650 (PTEN; loss, EGFR; exon 19 deletion), which are resistant to erlotinib.
View Article and Find Full Text PDFMutations within the catalytic domain of the histone methyltransferase EZH2 have been identified in subsets of patients with non-Hodgkin lymphoma (NHL). These genetic alterations are hypothesized to confer an oncogenic dependency on EZH2 enzymatic activity in these cancers. We have previously reported the discovery of EPZ005678 and EPZ-6438, potent and selective S-adenosyl-methionine-competitive small molecule inhibitors of EZH2.
View Article and Find Full Text PDFAlthough the EGF receptor tyrosine kinase inhibitors (EGFR-TKI) erlotinib and gefitinib have shown dramatic effects against EGFR mutant lung cancer, patients become resistant by various mechanisms, including gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression, thereafter relapsing. Thus, it is urgent to develop novel agents to overcome EGFR-TKI resistance. We have tested the effects of the mutant-selective EGFR-TKI WZ4002 and the mutant-selective Met-TKI E7050 on 3 EGFR mutant lung cancer cell lines resistant to erlotinib by different mechanisms: PC-9/HGF cells with an exon 19 deletion, H1975 with an L858R mutation, and HCC827ER with an exon 19 deletion, with acquired resistance to erlotinib because of HGF gene transfection, gatekeeper T790M mutation, and Met amplification, respectively.
View Article and Find Full Text PDFAcquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer.
View Article and Find Full Text PDFPurpose: Cancer cell microenvironments, including host cells, can critically affect cancer cell behaviors, including drug sensitivity. Although crizotinib, a dual tyrosine kinase inhibitor (TKI) of ALK and Met, shows dramatic effect against EML4-ALK lung cancer cells, these cells can acquire resistance to crizotinib by several mechanisms, including ALK amplification and gatekeeper mutation. We determined whether microenvironmental factors trigger ALK inhibitor resistance in EML4-ALK lung cancer cells.
View Article and Find Full Text PDFPurpose: Hepatocyte growth factor (HGF) induces resistance to reversible and irreversible epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) in EGFR mutant lung cancer cells by activating Met and the downstream phosphoinositide 3-kinase (PI3K)/Akt pathway. Moreover, continuous exposure to HGF accelerates the emergence of EGFR-TKI-resistant clones. We assayed whether a new Met kinase inhibitor, E7050, which is currently being evaluated in clinical trials, could overcome these three mechanisms of resistance to EGFR-TKIs.
View Article and Find Full Text PDFWhile epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors improve the prognosis of patients with EGFR mutant lung cancer, the prognosis of patients with nonmutant EGFR lung cancer, especially those with metastases, is still extremely poor. We have assessed the therapeutic efficacy of E7080, an orally available inhibitor of multiple tyrosine kinases including VEGF receptor 2 (VEGFR-2) and VEGFR-3, in experimental multiple organ metastasis of lung cancer cell lines without EGFR mutations. E7080 markedly inhibited the in vitro proliferation of VEGF-stimulated microvascular endothelial cells.
View Article and Find Full Text PDFE7080 is an inhibitor of multiple tyrosine kinases, several of which have pro-angiogenic properties, including receptors for VEGF, FGF, SCF and PDGF. We undertook our study to evaluate the preclinical activity of E7080 in human sarcomas. The antitumour activity of orally administered E7080 was tested in ten human tumour xenografts representing different sarcoma histotypes.
View Article and Find Full Text PDFPurpose: Malignant pleural mesothelioma (MPM) is a biologically heterogeneous malignant disease with a poor prognosis. We reported previously that the anti-vascular endothelial growth factor (VEGF) antibody, bevacizumab, effectively inhibited the progression of VEGF-high-producing (but not VEGF-low-producing) MPM cells in orthotopic implantation models, indicating the need for novel therapeutic strategies to improve the poor prognosis of this disease. Therefore, we focused on the multi-tyrosine kinase inhibitor E7080 and assessed its therapeutic efficacy against MPM cells with different proangiogenic cytokine production profiles.
View Article and Find Full Text PDFPurpose: Vascular endothelial growth factor (VEGF)-C/VEGF-receptor 3 (VEGF-R3) signal plays a significant role in lymphangiogenesis and tumor metastasis based on its effects on lymphatic vessels. However, little is known about the effect of inhibiting VEGF-R3 on lymphangiogenesis and lymph node metastases using a small-molecule kinase inhibitor.
Experimental Design: We evaluated the effect of E7080, a potent inhibitor of both VEGF-R2 and VEGF-R3 kinase, and bevacizumab on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of human breast cancer using MDA-MB-231 cells that express excessive amounts of VEGF-C.
E7080 is an orally active inhibitor of multiple receptor tyrosine kinases including VEGF, FGF and SCF receptors. In this study, we show the inhibitory activity of E7080 against SCF-induced angiogenesis in vitro and tumor growth of SCF-producing human small cell lung carcinoma H146 cells in vivo. E7080 inhibits SCF-driven tube formation of HUVEC, which express SCF receptor, KIT at the IC(50) value of 5.
View Article and Find Full Text PDFAs part of a series of studies to discover new topoisomerase II inhibitors, novel pyrimidoacridones, pyrimidophenoxadines, and pyrimidocarbazoles were synthesized, and in vitro and in vivo antitumor activities and DNA-protein and/or DNA-topoisomerase II cross-linking activity as an indicator of topoisomerase II-DNA cleavable complex formation were evaluated. The pyrimidocarbazoles possessed high in vitro and in vivo potencies. Compound 26 (ER-37326), 8-acetyl-2-[2-(dimethylamino)ethyl]-1H-pyrimido[5,6,1-jk]carbazole-1,3(2H)-dione, showed in vitro growth inhibitory activity with respective IC(50) values of 0.
View Article and Find Full Text PDFWe have discovered seven novel 12-membered macrolides, pladienolides A to G, from Streptomyces platensis Mer-11107, with pladienolide B the most potently inhibiting hypoxia induced-VEGF expression and proliferation of the U251 cancer cell line. A growth inhibitory study using a 39-cell line drug-screening panel demonstrated that pladienolide B has strong antitumor activities in vitro. A COMPARE analysis reveals that it has a unique antitumor spectrum that sets it apart from anticancer drugs currently in clinical use.
View Article and Find Full Text PDFWe have discovered a novel topoisomerase II (topo II) poison, ER-37328 (12,13-dihydro-5-[2-(dimethylamino)ethyl]-4H-benzo[c]pyrimido[5,6,1-jk]carbazole-4,6,10(5H,11H)-trione hydrochloride), which shows potent tumor regression activity against Colon 38 cancer inoculated s.c. Here, we describe studies on the cell-killing activity against a panel of human cancer cell lines and the antitumor activity of ER-37328 against human tumor xenografts.
View Article and Find Full Text PDFDNA topoisomerase II has been shown to be an important therapeutic target in cancer chemotherapy. Here, we describe studies on the antitumor activity of a novel topoisomerase II inhibitor, ER-37328 [12,13-dihydro-5-[2-(dimethylamino)ethyl]-4H-benzo[c]pyrimido[5,6,1- jk]carbazole-4,6,10(5H,11H)-trione hydrochloride]. ER-37328 inhibited topoisomerase II activity at 10 times lower concentration than etoposide in relaxation assay and induced double-strand DNA cleavage within 1 h in murine leukemia P388 cells, in a bell-shaped manner with respect to drug concentration.
View Article and Find Full Text PDF