In the context of doping control, conventional direct chemical testing detects only a limited scope of target substances in equine biological samples. To expand the ability to detect doping agents and their detection windows, metabolomics has recently become a common approach for monitoring alteration of biomarkers caused by doping agents in relevant metabolic pathways. In horse racing, remarkable changes in metabolic profiles between the rest state and racing are likely to affect the identification of doping biomarkers.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are released from all cells. Bile directly contacts bile duct tumor; bile-derived EVs may contain high concentrations of cancer biomarkers. We performed a proteomic analysis of human bile-derived EVs and identified a novel biomarker of cholangiocarcinoma (CCA).
View Article and Find Full Text PDFRecently, the illegal use of novel technologies, such as gene and cell therapies, has become a great concern for the horseracing industry. As a potential way to control this, metabolomics approaches that comprehensively analyze metabolites in biological samples have been gaining attention. However, it may be difficult to identify metabolic biomarkers for doping because physiological conditions generally differ between resting and exercise states in horses.
View Article and Find Full Text PDFBackgrounds: The aim of this study was to confirm the propagation of various canine distemper viruses (CDV) in hamster cell lines of HmLu and BHK, since only a little is known about the possibility of propagation of CDV in rodent cells irrespective of their epidemiological importance.
Methods: The growth of CDV in hamster cell lines was monitored by titration using Vero.dogSLAMtag (Vero-DST) cells that had been proven to be susceptible to almost all field isolates of CDV, with the preparations of cell-free and cell-associated virus from the cultures infected with recent Asian isolates of CDV (13 strains) and by observing the development of cytopathic effect (CPE) in infected cultures of hamster cell lines.