Modifying the side chain of poly(meth)acrylate with moieties originating from biocompatible polymers can be an effective method for developing novel blood-compatible polymers. Inspired by biocompatible poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx), four water-soluble poly(tertiary amide acylate) analogues bearing a pendant tertiary amide were synthesized. The results of hemolysis and cell viability tests showed that all the poly(tertiary amide acylate) analogues were compatible with red blood cells, HeLa cells, and normal human dermal fibroblasts as PMeOx or PEtOx.
View Article and Find Full Text PDFHydration states of polymers are known to directly influence the adsorption of biomolecules. Particularly, intermediate water (IW) has been found able to prevent protein adsorption. Experimental studies have examined the IW content and nonthrombogenicity of poly(2-methoxyethyl acrylate) analogues with different side-chain spacings and lengths, which are HP ( is the number of backbone carbons in a monomer) and PMCA ( is the number of carbons in-between ester and ether oxygens of the side-chain) series, respectively.
View Article and Find Full Text PDFIntermediate water (IW) has been reported to play an important role in nonthrombogenicity of biomaterials. However, clear insights into the IW in the hydrated polymer are still debated. In this study, a series of molecular dynamics simulations was performed to identify the IW structure in hydrated poly(ω-methoxyalkyl acrylate)s (PMCAs, where indicates the number of methylene carbons) with = 1-6.
View Article and Find Full Text PDFIntermediate water (IW) is known to play an important role in the antifouling property of biocompatible polymers. However, how IW prevents protein adsorption is still unclear. To understand the role of IW in the antifouling mechanism, molecular dynamics simulation was used to investigate the dynamic properties of water and side-chains for hydrated poly(ω-methoxyalkyl acrylate)s (PMCA, where indicates the number of methylene carbons) with = 1-6 and poly(-butyl acrylate) (PBA) in this study.
View Article and Find Full Text PDFThe practical use of the viscous liquid polymer, poly(2-methoxyethyl acrylate) (PMEA), was expanded from thin films with excellent blood compatibility to thick coatings and free-standing films without essentially sacrificing its blood compatibility. This was undertaken by creating multiple hydrogen-bonding polymer networks by introducing a functional methacrylic monomer bearing a 6-methyl-2-ureido-4[1]-pyrimidone group in the PMEA backbone via free radical copolymerization. The hydrogen-bonded PMEA (H-PMEA) contained about 6 mol % of the functional monomer in the copolymer.
View Article and Find Full Text PDFThe blood-compatible polymer poly(2-methoxyethyl acrylate) (PMEA) is composed of nanometer-scale interfacial structures because of the phase separation of the polymer and water at the PMEA/phosphate-buffered saline (PBS) interface. We synthesized PMEA with four different molecular weights (19, 30, 44, and 183 kg/mol) to investigate the effect of the molecular weight on the interfacial structures and blood compatibility. The amounts of intermediate water and fibrinogen adsorption were not affected by the molecular weight of PMEA.
View Article and Find Full Text PDF