Publications by authors named "Toshiki Miyazaki"

Dicalcium phosphate anhydrous (DCPA) presents good biomineralization ability, the strontium element is known for superior bone affinity, and a whisker possesses good mechanical strength; all these are beneficial for improving the drawbacks of hydroxyapatite (HAP) like weaker mechanical properties, poor biomineralization, and slower degradation/absorption. Therefore, a homogeneous precipitation was adopted to synthesize Sr-substituted and DCPA and HAP coexisting whiskers. The composition, structure, and morphology based on urea dosage and substitution content were characterized, and the roles of DCPA, Sr, and whisker shape were investigated.

View Article and Find Full Text PDF

Microspheres composed of Y-containing materials are effective agents for cancer radioembolization therapy using β-rays. The distribution and dynamics of these microspheres in tissues can be easily determined by providing the microspheres with an imaging function. In addition, the use of quantum dots will enable the detection of microspheres at the individual particle level with high sensitivity.

View Article and Find Full Text PDF

Poly (methyl methacrylate) (PMMA) bone cement relies on the loaded antibiotic to realize the antibacterial purpose. But the exothermic behavior during setting often makes temperature-sensitive antibiotics inactivated. It is necessary to develop new material candidates to replace antibiotics.

View Article and Find Full Text PDF

Ti-50Zr alloy is 2.5 times as strong as pure Ti and has a lower Young's modulus, making it a useful material for repairing bone and teeth. However, Ti-50Zr alloy has a limited ability to bond with bone in vivo.

View Article and Find Full Text PDF

Tolvaptan is an orally active vasopressin V receptor antagonist and used for the treatment of volume overload in some disease as an aquaretic. Tolvaptan sodium phosphate (OPC-61815) is a pro-drug of tolvaptan that was designed to improve water solubility and enable intravenous use. The conversion of OPC-61815 to tolvaptan was evaluated for in vitro and in vivo pharmacokinetic studies.

View Article and Find Full Text PDF

Bone cement based on poly(methyl methacrylate) (PMMA) powder and methyl methacrylate (MMA) liquid is a very popular biomaterial used for the fixation of artificial joints. However, there is a risk of this cement loosening from bone because of a lack of bone-bonding bioactivity. Apatite formation in the body environment is a prerequisite for cement bioactivity.

View Article and Find Full Text PDF

Background: Microbeads for bone repair have been widely studied because they can be conveniently used in clinical applications.

Objective: This study concerns the preparation, physical properties and in vitro characterisation of different types of alginate/calcium phosphate (CaP) ceramic microbeads, which were designed for use as drug delivery systems and bone-regeneration matrices.

Methods: Hybrid microbeads were successfully prepared from sodium alginate and various CaP, namely 𝛼-tricalcium phosphate, 𝛽-tricalcium phosphate and hydroxyapatite using the liquid droplet method.

View Article and Find Full Text PDF

Polymethyl methacrylate (PMMA)-based bone cement is a popular biomaterial used for fixation of artificial joints. A next-generation bone cement having bone-bonding ability, i.e.

View Article and Find Full Text PDF

Ti-Zr alloys are expected to be novel biomaterials with low stress shielding owing to their lower Young's moduli than pure Ti. The drawback of metallic biomaterials is that their bone-bonding abilities are relatively low. NaOH and heat treatments have been performed to provide Ti-50Zr with apatite-forming ability in the body environment, which is essential for bone bonding.

View Article and Find Full Text PDF

Bioactivity modification helps polymethylmethacrylate (PMMA) bone cement to reinforce its interfacial adhesion to bone tissues through the chemical bonding of apatite. Since Si-OH groups combined with Ca ions have succeeded in inducing apatite formation, more combinations of functional groups and active ions are being explored. In this study, Bis[2-(methacryloyloxy)ethyl] phosphate (B2meP) containing phosphate (=POH) groups and Ca(CHCOO) supplying Ca ion were adopted to investigate the feasibility of equipping PMMA bone cement with apatite-forming ability , more effects under designed contents on setting behavior, injectability, contact angle, cytotoxicity and mechanical strength were also investigated.

View Article and Find Full Text PDF

Hyperthermia treatment using appropriate magnetic materials in an alternating magnetic field to generate heat has been recently proposed as a low-invasive cancer treatment method. Magnetite (FeO) nanoparticles are expected to be an appropriate type of magnetic thermal seed for this purpose, and the addition of organic substances during the synthesis process has been studied for controlling particle size and improving biological functions. However, the role of the properties of the organic polymer chosen as the modifier in the physical properties of the thermal seed has not yet been comprehensively revealed.

View Article and Find Full Text PDF

Microporous spheres in a hybrid system consisting of chitosan and γ-glycidoxypropyltrimethoxysilane (GPTMS) have advantages in a range of applications, e.g., as vehicles for cell transplantation and soft tissue defect filling materials, because of their excellent cytocompatibility with various cells.

View Article and Find Full Text PDF

Magnetic iron oxides such as magnetite and γ-hematite have attracted considerable attention as thermoseeds for hyperthermia treatment because of their ability to generate heat under an alternating magnetic field. Control of the particle size and their combination with biocompatible polymers are expected to be beneficial for optimization of the nanoparticles. These processes can be accomplished through the synthesis of magnetite in gels, as the network structure of the polymer gel can control the grain growth of the magnetite.

View Article and Find Full Text PDF

Nanocomposites of magnetite (FeO) and reduced graphene oxide (rGO) generate heat under an alternating magnetic field and therefore have potential applications as thermoseeds for cancer hyperthermia treatment. However, the properties of such nanocomposites as biomaterials have not been sufficiently well characterized. In this study, the osteoconductivity of FeO-rGO nanocomposites of various compositions was evaluated in vitro in terms of their apatite-forming ability in simulated body fluid (SBF).

View Article and Find Full Text PDF

Chemical modification with specific functional groups has been the conventional method to develop bone-bonding bioactive organic-inorganic hybrids. These materials are attractive as bone substitutes because they are flexible and have a Young's modulus similar to natural bone. Immobilization of sulfonic acid groups (-SOH) onto the polymer chain is expected to produce such hybrids because these groups induce apatite formation in a simulated body fluid (SBF) and enhance the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Organic-inorganic composites are novel bone substitutes that can ameliorate the mismatch of Young's moduli between natural bone and implanted ceramics. Phosphate groups contribute to the formation of apatite in a simulated body fluid (SBF) and the adhesion of osteoblast-like cells. Therefore, modification of a polymer with these functional groups is expected to enhance the ability of the organic-inorganic composite to bond with bone.

View Article and Find Full Text PDF

Hafnium (Hf) has attracted considerable attention as a component of biomedical titanium (Ti) alloys with low Young's moduli and/or shape-memory functionalities, because its cytotoxicity is as low as that of Ti. The drawback of metals is that their bone-bonding ability is generally low. It is known that apatite formation in the body is a prerequisite for bone-bonding.

View Article and Find Full Text PDF

Autograft has been carried out for anterior cruciate ligament (ACL) reconstruction surgery. However, it has negative aspect because patients lose their healthy ligaments from other part. We focus on a chitosan-hydroxyapatite (HAp) composite fiber as a scaffold of ligament regeneration.

View Article and Find Full Text PDF

Chitosan microspheres can address challenges associated with poor bioavailability or unsustained drug release when used as drug delivery systems thanks to their mucoadhesiveness, which allows the drug dosage to be retained in the gastrointestinal track for extended periods. Chitosan-3-glycidoxypropyltrimethoxysilane-β-glycerophosphate (chitosan-GPTMS-β-GP) hybrid microspheres were synthetized through sol-gel processing using a microfluidic approach. Microspheres with uniform spherical shapes and sizes of approximately 650μm were obtained.

View Article and Find Full Text PDF

One of the most important and novel approaches of biomedical engineering is the development of new, effective and non-invasive medical diagnosis abilities, and treatments that have such requirements as advanced technologies for tumor imaging. Gadolinium (Gd) compounds can be used as MRI contrast agents, however the release of Gd ions presents some adverse side effects such as renal failure, pancreatitis or local necrosis. The main aim of the work was the development and optimization of Gadolinium based nanoparticles coated with silica to be used as bioimaging agent.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how cellular responses after implantation influence bone growth (osteoconduction), specifically looking at mouse osteoblastic cells (MC3T3-E1) on different coated surfaces.
  • It was found that fibronectin (Fn) coating improved cell adhesion and spreading on hydroxyapatite (HAp) but did not impact cell proliferation or differentiation on either HAp or alumina (α-Al2O3).
  • The results suggest that while Fn-coated HAp may not directly stimulate bone cells for osteoconduction, it could influence inflammatory cell responses and interact with serum proteins to potentially enhance bone cell activity; further research is needed in this area.
View Article and Find Full Text PDF

Phosphate groups on materials surfaces are known to contribute to apatite formation upon exposure of the materials in simulated body fluid and improved affinity of the materials for osteoblast-like cells. Typically, polymers containing phosphate groups are organic matrices consisting of apatite-polymer composites prepared by biomimetic process using simulated body fluid. Ca(2+) incorporation into the polymer accelerates apatite formation in simulated body fluid owing because of increase in the supersaturation degree, with respect to apatite in simulated body fluid, owing to Ca(2+) release from the polymer.

View Article and Find Full Text PDF

The osteoconductivity mechanism of hydroxyapatite (HAp) has not been elucidated. It is hypothesized that specific proteins adsorb on HAp, promoting its osteoconductivity. To verify this hypothesis, we compared the adsorption behavior of fibronectin (Fn) on HAp powder and on α-alumina (α-Al2O3) powder, a material with no osteoconductivity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: