Nihon Hoshasen Gijutsu Gakkai Zasshi
June 2021
Purpose: Detector-dependent interinstitutional variations of the beam data may lead to uncertainties of the delivered dose to patients. Here we evaluated the inter-unit variability of the flattened and flattening filter-free (FFF) beam data of multiple TrueBeam (Varian Medical Systems) linear accelerators focusing on the small-field dosimetry.
Methods: The beam data of 6- and 10-MV photon beams with and without flattening filter measured for modeling of an iPLAN treatment planning system (BrainLAB) were collected from 12 institutions - ten HD120 Multileaf Collimator (MLC) and two Millennium120 MLC.
Nihon Hoshasen Gijutsu Gakkai Zasshi
December 2019
If the vendor's representative beam data (RBD) for TrueBeam linear accelerators are to be valid for use in clinical practice, the variations in the beam data used for beam modeling must be small. Although a few studies have reported the variation of the beam data of the TrueBeam machines, the numbers of machines analyzed in those studies were small. In this study, we investigated the variation in the beam data for 21 TrueBeam machines collected from 17 institutions with their agreement.
View Article and Find Full Text PDFDetector selection and technical problems can result in large variations in small-field-dosimetry data among institutions. In this study, we evaluated inter-institutional variability in the small-field-beam data of the Novalis Tx linear accelerator (Varian Medical Systems and BrainLAB) with an HD120 multileaf collimator. Beam data for modeling an iPLAN treatment planning system (BrainLAB) were collected from 19 institutions and median values of percentage depth doses (PDD), diagonal profiles, transversal profiles, and ratios of detector readings (detector output factors; OF ) were calculated.
View Article and Find Full Text PDFPurpose: The aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions.
Methods: All lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC).
Nihon Hoshasen Gijutsu Gakkai Zasshi
March 2007