Substitution of inorganic ions into β-tricalcium phosphate (β-TCP) is a well-known approach for facilitating biological functions of bioceramics. However, the dissolution mechanism of those β-TCPs is still under intensive debates. In the present study, the effect of copper substitution into β-TCP crystal structure on the local chemical structure and dissolution property of the copper-doped β-TCP (CuTCP) was investigated to clarify the dissolution mechanism of β-TCP.
View Article and Find Full Text PDFMoldable and injectable calcium-phosphate cements (CPCs) are material candidates for bone replacement applications. In the present study, we examined the effectiveness of sodium alginate and sodium citrate additives to the liquid phase of CPC, in improving its handling property as well as mechanical strength. The use of these additives enhanced the handling property significantly, in terms of consistency as compared to CPC without additives due to the liquefying effect caused by the adsorption of citrate ions on the cement particles.
View Article and Find Full Text PDFAutograft has been carried out for anterior cruciate ligament (ACL) reconstruction surgery. However, it has negative aspect because patients lose their healthy ligaments from other part. We focus on a chitosan-hydroxyapatite (HAp) composite fiber as a scaffold of ligament regeneration.
View Article and Find Full Text PDFWe have succeeded in improving the material properties of a chelate-setting calcium-phosphate cement (CPC), which is composed of hydroxyapatite (HAp) the surface of which has been modified with inositol hexaphosphate (IP6) by adding α-tricalcium phosphate (α-TCP) powder. In order to create a novel chelate-setting CPC with sufficient bioresorbability, gelatin particles were added into the IP6-HAp/α-TCP cement system to modify the material properties. The effects of adding polysaccharides (chitosan, chondroitin sulfate, and sodium alginate) into the sodium dihydrogen phosphate mixing solution on the material properties of the gelatin-hybridized CPC were evaluated.
View Article and Find Full Text PDFAn injectable chelate-setting hydroxyapatite cement (IP6-HAp), formed by chelate-bonding capability of inositol phosphate (IP6), was developed. The effects of ball-milling duration of starting HAp powder and IP6 concentration on the material properties such as injectability and mechanical strength of the cement were examined. The cement powder was prepared by ball-milling the as-synthesized HAp powder for 5 min using ZrO beads with a diameter of 10 mm, followed by another 60 min with ZrO beads with a diameter of 2 mm, and thereafter surface-modified with 5000 ppm of IP6 solution.
View Article and Find Full Text PDFCell-loaded apatite microcarriers present as potential scaffolds for direct in-vivo delivery of cells post-expansion to promote bone regeneration. The objective of this study was to evaluate the osteogenic potency of human foetal mesenchymal stem cells (hfMSC)-loaded apatite microcarriers when implanted subcutaneously in a mouse model. This was done by examining for ectopic bone formation at 2 weeks, 1 month and 2 months, which were intended to coincide with the inflammation, healing and remodelling phases, respectively.
View Article and Find Full Text PDFPrevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2013
Hydroxyapatite (HAp), with its high biocompatibility and osteoconductivity, readily absorbs proteins, amino acids and other substances, which in turn favor the adsorption and colonization of bacteria. To prevent bacterial growth and biofilm formation on HAp discs, silver-containing (1-20 mol%) HAp (Ag-HAp) powders were synthesized using an ultrasonic spray pyrolysis (USSP) technique. The X-ray diffraction (XRD) peaks were very broad, indicating low crystallinity, and this induced the release of Ag(+) ions from Ag-HAp powders.
View Article and Find Full Text PDFNovel biodegradable β-tricalcium phosphate (β-TCP) cements with anti-washout properties were created on the basis of chelate-setting mechanism of inositol phosphate (IP6) using β-TCP powders. The β-TCP powders were ball-milled using ZrO₂ beads for 0-6 h in the IP6 solutions with concentrations from 0 to 10,000 ppm. The chelate-setting β-TCP cement with anti-washout property was successfully fabricated by mixing the β-TCP powder ball-milled in 3,000 ppm IP6 solution for 3 h and 2.
View Article and Find Full Text PDFIn vertebrate bones and tooth enamel surfaces, the respective a,b-planes and c-planes of hydroxyapatite (HAp) crystals are preferentially exposed. However, the reason why the HAp crystals show different orientations depending on the type of hard tissues is not yet understood. To clarify this question, appropriate ceramic models with highly preferred orientation are necessary.
View Article and Find Full Text PDFThe hydroxyapatite (HAp) powder preparation process was optimized to fabricate inositol phosphate-HAp (IP6-HAp) cement with enhanced mechanical properties. Starting HAp powders were synthesized via a wet chemical process. The effect of the powder preparation process on the morphology, crystallinity, median particle size, and specific surface area (SSA) of the cement powders was examined, together with the mechanical properties of the resulting cement specimens.
View Article and Find Full Text PDFThe influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.
View Article and Find Full Text PDF