Publications by authors named "Toshihiro Banjo"

Alternative polyadenylation (APA) is strikingly dysregulated in many cancers. Although global APA dysregulation is frequently associated with poor prognosis, the importance of most individual APA events is controversial simply because few have been functionally studied. Here, we address this gap by developing a CRISPR-Cas9-based screen to manipulate endogenous polyadenylation and systematically quantify how APA events contribute to tumor growth in vivo.

View Article and Find Full Text PDF

EP300 and its paralog CBP play an important role in post-translational modification as histone acetyltransferases (HATs). EP300/CBP inhibition has been gaining attention as an anticancer treatment target in recent years. Herein, we describe the identification of a novel, highly selective EP300/CBP inhibitor, compound 11 (DS17701585), by scaffold hopping and structure-based optimization of a high-throughput screening hit 1.

View Article and Find Full Text PDF

RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome.

View Article and Find Full Text PDF

Heartbeat is required for normal development of the heart, and perturbation of intracardiac flow leads to morphological defects resembling congenital heart diseases. These observations implicate intracardiac haemodynamics in cardiogenesis, but the signalling cascades connecting physical forces, gene expression and morphogenesis are largely unknown. Here we use a zebrafish model to show that the microRNA, miR-21, is crucial for regulation of heart valve formation.

View Article and Find Full Text PDF

Cardiogenesis proceeds with concomitant changes in hemodynamics to accommodate the circulatory demands of developing organs and tissues. In adults, circulatory adaptation is critical for the homeostatic regulation of blood circulation. In these hemodynamics-dependent processes of morphogenesis and adaptation, a mechanotransduction pathway, which converts mechanical stimuli into biological outputs, plays an essential role, although its molecular nature is largely unknown.

View Article and Find Full Text PDF