Publications by authors named "Toshihiko Sasaki"

In comparison to conventional discrete-variable (DV) quantum key distribution (QKD), continuous-variable (CV) QKD with homodyne/heterodyne measurements has distinct advantages of lower-cost implementation and affinity to wavelength division multiplexing. On the other hand, its continuous nature makes it harder to accommodate to practical signal processing, which is always discretized, leading to lack of complete security proofs so far. Here we propose a tight and robust method of estimating fidelity of an optical pulse to a coherent state via heterodyne measurements.

View Article and Find Full Text PDF

Quantum key distribution (QKD) over a point-to-point link enables us to benefit from a genuine quantum effect even with conventional optics tools such as lasers and photon detectors, but its capacity is limited to a linear scaling of the repeaterless bound. Recently, twin-field (TF) QKD was conjectured to beat the limit by using an untrusted central station conducting a single-photon interference detection. So far, the effort to prove the conjecture was confined to the infinite key limit which neglected the time and cost for monitoring an adversary's act.

View Article and Find Full Text PDF

Characterization of photon statistics of a light source is one of the most basic tools in quantum optics. Existing methods rely on an implicit and unverifiable assumption that the source never emits too many photons to stay within the measuring range of the detectors. As a result, they fail to fulfill the demand arising from emerging applications of quantum information such as quantum cryptography.

View Article and Find Full Text PDF

Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal.

View Article and Find Full Text PDF