Publications by authors named "Toshihiko Oki"

The identity and origin of the stem/progenitor cells for adult joint cartilage repair remain unknown, impeding therapeutic development. Simulating the common therapeutic modality for cartilage repair in humans, i.e.

View Article and Find Full Text PDF

Genome-wide CRISPR screens have been extremely useful in identifying therapeutic targets in diverse cancers by defining genes that are essential for malignant growth. However, most CRISPR screens were performed in vitro and thus cannot identify genes that are essential for interactions with the microenvironment in vivo. Here, we report genome-wide CRISPR screens in 2 in vivo murine models of acute myeloid leukemia (AML) driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1.

View Article and Find Full Text PDF

Celiac disease is a common immune-mediated disease characterized by abnormal T-cell responses to gluten. For many patients, symptoms and intestinal damage can be controlled by a gluten-free diet, but, for some, this approach is not enough, and celiac disease progresses, with serious medical consequences. Multiple therapies are now under development, increasing the need for biomarkers that allow identification of specific patient populations and monitoring of therapeutic activity and durability.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a high remission, high relapse fatal blood cancer. Although mTORC1 is a master regulator of cell proliferation and survival, its inhibitors have not performed well as AML treatments. To uncover the dynamics of mTORC1 activity in vivo, fluorescent probes are developed to track single cell proliferation, apoptosis and mTORC1 activity of AML cells in the bone marrow of live animals and to quantify these activities in the context of microanatomical localization and intra-tumoral heterogeneity.

View Article and Find Full Text PDF

A still unanswered question is what drives the small fraction of activated germinal center (GC) B cells to become long-lived quiescent memory B cells. We found here that a small population of GC-derived CD38intBcl6hi/intEfnb1+ cells with lower mTORC1 activity favored the memory B cell fate. Constitutively high mTORC1 activity led to defects in formation of the CD38intBcl6hi/intEfnb1+ cells; conversely, decreasing mTORC1 activity resulted in relative enrichment of this memory-prone population over the recycling-prone one.

View Article and Find Full Text PDF

Cancer relapse begins when malignant cells pass through the extreme metabolic bottleneck of stress from chemotherapy and the byproducts of the massive cell death in the surrounding region. In acute myeloid leukemia, complete remissions are common, but few are cured. We tracked leukemia cells in vivo, defined the moment of maximal response following chemotherapy, captured persisting cells, and conducted unbiased metabolomics, revealing a metabolite profile distinct from the pre-chemo growth or post-chemo relapse phase.

View Article and Find Full Text PDF

Quiescent hematopoietic stem cells (HSCs) are typically dormant, and only a few quiescent HSCs are active. The relationship between "dormant" and "active" HSCs remains unresolved. Here we generate a G marker (GM) mouse line that visualizes quiescent cells and identify a small population of active HSCs (GM), which are distinct from dormant HSCs (GM), within the conventional quiescent HSC fraction.

View Article and Find Full Text PDF

Fenretinide is a synthetic retinoid characterized by anticancer activity in preclinical models and favorable toxicological profile, but also by a low bioavailability that hindered its clinical efficacy in former clinical trials. We developed a new formulation of fenretinide complexed with 2-hydroxypropyl-beta-cyclodextrin (nanofenretinide) characterized by an increased bioavailability and therapeutic efficacy. Nanofenretinide was active in cell lines derived from multiple solid tumors, in primary spheroid cultures and in xenografts of lung and colorectal cancer, where it inhibited tumor growth independently from the mutational status of tumor cells.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) produce large amounts of type-I interferon (IFN) in response to viral infection or self nucleic acids. Leukocyte mono-immunoglobulin-like receptor 8 (LMIR8), also called CMRF-35-like molecule-6 (CLM-6), is a putative activating receptor among mouse LMIR/CLM/CD300 members; however, the expression and function of LMIR8 remain unclear. Here, we characterize mouse LMIR8 as a pDC receptor.

View Article and Find Full Text PDF

CD300 molecules (CD300s) belong to paired activating and inhibitory receptor families, which mediate immune responses. Human CD300e (hCD300e) is expressed in monocytes and myeloid dendritic cells and transmits an immune-activating signal by interacting with DNAX-activating protein 12 (DAP12). However, the CD300e ortholog in mice (mCD300e) is poorly characterized.

View Article and Find Full Text PDF

Sepsis is a serious clinical problem. Negative regulation of innate immunity is associated with sepsis progression, but the underlying mechanisms remains unclear. Here we show that the receptor CD300f promotes disease progression in sepsis.

View Article and Find Full Text PDF

Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of—and molecular basis for—heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes in vivo.

View Article and Find Full Text PDF

Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo.

View Article and Find Full Text PDF

Bone marrow niches for hematopoietic progenitor cells are not well defined despite their critical role in blood homeostasis. We previously found that cells expressing osteocalcin, a marker of mature osteolineage cells, regulate the production of thymic-seeding T lymphoid progenitors. Here, using a selective cell deletion strategy, we demonstrate that a subset of mesenchymal cells expressing osterix, a marker of bone precursors in the adult, serve to regulate the maturation of early B lymphoid precursors by promoting pro-B to pre-B cell transition through insulin-like growth factor 1 (IGF-1) production.

View Article and Find Full Text PDF

Recent progress in high-speed sequencing technology has revealed that tumors harbor novel mutations in a variety of genes including those for molecules involved in epigenetics and splicing, some of which were not categorized to previously thought malignancy-related genes. However, despite thorough identification of mutations in solid tumors and hematological malignancies, how these mutations induce cell transformation still remains elusive. In addition, each tumor usually contains multiple mutations or sometimes consists of multiple clones, which makes functional analysis difficult.

View Article and Find Full Text PDF

Two types of CCAAT-enhancer-binding protein α (C/EBPα) mutants are found in acute myeloid leukemia (AML) patients: N-terminal frame-shift mutants (C/EBPα-N(m)) generating p30 as a dominant form and C-terminal basic leucine zipper domain mutants (C/EBPα-C(m)). We have previously shown that C/EBPα-K304_R323dup belonging to C/EBPα-C(m), but not C/EBPα-T60fsX159 belonging to C/EBPα-N(m), alone induced AML in mouse bone marrow transplantation (BMT) models. Here we show that various C/EBPα-C(m) mutations have a similar, but not identical, potential in myeloid leukemogenesis.

View Article and Find Full Text PDF

Myeloid malignancies consist of acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasm (MPN). The latter two diseases have preleukemic features and frequently evolve to AML. As with solid tumors, multiple mutations are required for leukemogenesis.

View Article and Find Full Text PDF

High levels of HES1 expression are frequently found in BCR-ABL(+) chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BC-like disease; however, the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs).

View Article and Find Full Text PDF

The quiescent (G0) phase of the cell cycle is the reversible phase from which the cells exit from the cell cycle. Due to the difficulty of defining the G0 phase, quiescent cells have not been well characterized. In this study, a fusion protein consisting of mVenus and a defective mutant of CDK inhibitor, p27 (p27K(-)) was shown to be able to identify and isolate a population of quiescent cells and to effectively visualize the G0 to G1 transition.

View Article and Find Full Text PDF

We have previously shown that elevated expression of Hairy enhancer of split 1 (Hes1) contributes to blast crisis transition in Bcr-Abl-positive chronic myelogenous leukemia. Here we investigate whether Hes1 is involved in the development of other myeloid neoplasms. Notably, Hes1 expression was elevated in only a few cases of 65 samples with different types of myeloid neoplasms.

View Article and Find Full Text PDF

Recurrent mutations in the gene encoding additional sex combs-like 1 (ASXL1) are found in various hematologic malignancies and associated with poor prognosis. In particular, ASXL1 mutations are common in patients with hematologic malignancies associated with myelodysplasia, including myelodysplastic syndromes (MDSs), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1.

View Article and Find Full Text PDF

Background: Male germ cell RacGTPase activating protein (MgcRacGAP) is an important regulator of the Rho family GTPases--RhoA, Rac1, and Cdc42--and is indispensable in cytokinesis and cell cycle progression. Inactivation of RhoA by phosphorylated MgcRacGAP is an essential step in cytokinesis. MgcRacGAP is also involved in G1-S transition and nuclear transport of signal transducer and activator of transcription 3/5 (STAT3/5).

View Article and Find Full Text PDF

CD300C is highly homologous with an inhibitory receptor CD300A in an immunoglobulin-like domain among the human CD300 family of paired immune receptors. To clarify the precise expression and function of CD300C, we generated antibodies discriminating between CD300A and CD300C, which recognized a unique epitope involving amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Notably, CD300C was highly expressed in human monocytes and mast cells.

View Article and Find Full Text PDF