Publications by authors named "Toshiharu Horie"

Porphyria cutanea tarda (PCT), the most common of the human porphyrias, arises from a deficiency of uroporphyrinogen decarboxylase. Studies have shown a high prevalence of hepatitis C virus (HCV) infection in patients with PCT. While these observations implicate HCV infection as a risk factor for PCT pathogenesis, the mechanism of interaction between the virus and porphyrin metabolism is unknown.

View Article and Find Full Text PDF

3-Deoxyglucosone (3-DG) is a highly reactive carbonyl intermediate in glycation reaction (also known as Maillard reaction) and plays an important role in diabetic complications. We investigated the potential involvement of 3-DG in doxorubicin (DXR)-induced cardiotoxicity. Male Crl:CD(SD) rats received intravenous injections of DXR at 2mg/kg, once weekly, for 6 weeks, with/without daily intraperitoneal treatment with 3-DG scavenging agents, i.

View Article and Find Full Text PDF

Bile acid (BA) retention within hepatocytes is an underlying mechanism of cholestatic drug-induced liver injury (DILI). We previously developed an assay using sandwich-cultured human hepatocytes (SCHHs) to evaluate drug-induced hepatocyte toxicity accompanying intracellular BA accumulation. However, due to shortcomings commonly associated with the use of primary human hepatocytes (e.

View Article and Find Full Text PDF

Herbal medicines are currently in high demand, and their popularity is steadily increasing. Because of their perceived effectiveness, fewer side effects and relatively low cost, they are being used for the management of numerous medical conditions. However, they are capable of affecting the pharmacokinetics and pharmacodynamics of coadministered conventional drugs.

View Article and Find Full Text PDF

The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI.

View Article and Find Full Text PDF

The bile salt export pump (BSEP or Bsep) functions as an apical transporter to eliminate bile acids (BAs) from hepatocytes into the bile. BSEP or Bsep inhibitors engender BA retention, suggested as an underlying mechanism of cholestatic drug-induced liver injury. We previously reported a method to evaluate BSEP-mediated BA-dependent hepatocyte toxicity by using sandwich-cultured hepatocytes (SCHs).

View Article and Find Full Text PDF

Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS).

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (MRP2)/ATP-binding cassette protein C2 (ABCC2) and multidrug resistance protein 1 (MDR1)/ABCB1 are well-known efflux transporters located on the brush border membrane of the small intestinal epithelia, where they limit the absorption of a broad range of substrates. The expression patterns of MRP2/ABCC2 and MDR1/ABCB1 along the small intestinal tract are tightly regulated. Several reports have demonstrated the participation of ERM (ezrin/radixin/moesin) proteins in the posttranslational modulation of MRP2/ABCC2 and MDR1/ABCB1, especially with regard to their membrane localization.

View Article and Find Full Text PDF

Test compound A ((5Z)-6-[(2R,3S)-3-({[(4-Chloro-2-methylphenyl)sulfonyl]amino}methyl) bicyclo[2.2.2]oct-2-yl]hex-5-enoic acid) was withdrawn from premarketing clinical trials due to severe liver injury.

View Article and Find Full Text PDF

Purpose: Methotrexate (MTX)-induced intestinal mucositis limits the use of the drug. We previously reported that MTX-dependent production of reactive oxygen species is an initiating signal leading to neutrophil migration and intestinal barrier dysfunction. Moreover, alterations of zonula occludens (ZO)-1, an integral component of tight junctions (TJs), contribute to its dysfunction.

View Article and Find Full Text PDF

Background: Previously, we reported that hepatic transporters were down-regulated consistent with intestinal injury in indomethacin (IDM)-treated rats.

Aim: The purpose of this study was to characterize this mechanism of the down-regulation of hepatic transporters in IDM-treated rats.

Methods: Hepatic nuclear receptor expressions, oxidative stress condition and the expression of hepatic transporters were evaluated in rats with IDM-induced intestinal injury with or without the administration of mucosal protectant ornoprostil, a prostaglandin E1 analogue, or aminoguanidine (AG), an iNOS inhibitor.

View Article and Find Full Text PDF

Previously, we reported a long-lasting inhibition of transport mediated by organic anion-transporting polypeptides (OATPs) in humans and rats by cyclosporin A (CsA). In the present study, we examined the effects of several other compounds on OATP1B1-mediated transport, with a focus on long-lasting inhibition. Effects of coincubation, preincubation, or preincubation plus coincubation of 12 compounds on uptake of estrone 3-sulfate (E1 S) in OATP1B1-expressing HEK293T cells were examined.

View Article and Find Full Text PDF

Vernonia amygdalina (VA), Carica papaya (CP), and Tapinanthus sessilifolius (ML) are widely used in some countries as medicinal herbs to treat ailments including malaria, cancer, and diabetes. We previously reported the inhibitory effects of these herbs on permeability glycoprotein (P-gp) in Caco-2 cell monolayers. This study used ex vivo and in vivo models to investigate the likelihood of P-gp-mediated herb-drug interactions occurring.

View Article and Find Full Text PDF

Phenformin causes lactic acidosis in clinical situations due to inhibition of mitochondrial respiratory chain complex I. It is reportedly taken up by hepatocytes and exhibits mitochondrial toxicity in the liver. In this study, uptake of phenformin and [(14)C]tetraethylammonium (TEA) and complex I inhibition by phenformin were examined in isolated liver and heart mitochondria.

View Article and Find Full Text PDF

Organic anion transporting polypeptide (OATP) family transporters accept a number of drugs and are increasingly being recognized as important factors in governing drug and metabolite pharmacokinetics. OATP1B1 and OATP1B3 play an important role in hepatic drug uptake while OATP2B1 and OATP1A2 might be key players in intestinal absorption and transport across blood-brain barrier of drugs, respectively. To understand the importance of OATPs in the hepatic clearance of drugs, the rate-determining process for elimination should be considered; for some drugs, hepatic uptake clearance rather than metabolic intrinsic clearance is the more important determinant of hepatic clearances.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Several herbal medicines are concomitantly used with conventional medicines with a resultant increase in the recognition of herb-drug interactions. The phytomedicines Vernonia amygdalina Delile (VA), family Asteraceae; Azadiractha indica A. Juss (NL), family Meliaceae; Morinda lucida Benth (MLB), family Rubiaceae; Cymbopogon citratus Stapf (LG), family Poaceae; Curcuma longa L.

View Article and Find Full Text PDF

A solid dispersion (SPD) of carbamazepine (CBZ) with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was prepared by the spray drying method. The apparent solubility (37 °C, pH 7.4) of CBZ observed with the SPD was over 3 times higher than the solubility of unprocessed CBZ.

View Article and Find Full Text PDF

Antimalarials are widely used in African and Southeast Asian countries, where they are combined with other drugs for the treatment of concurrent ailments. The potential for P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) between antimalarials and P-gp substrates was examined using a Caco-2 cell-based model. Selected antimalarials were initially screened for their interaction with P-gp based on the inhibition of rhodamine-123 (Rho-123) transport in Caco-2 cells.

View Article and Find Full Text PDF

The purpose of the present study is to examine the long-lasting inhibition of intestinal organic anion transporting polypeptides (Oatps) by cyclosporin A (CsA) in rats using fexofenadine (FEX) as a probe drug. We examined the pharmacokinetics of FEX after its intravenous or oral administration to rats at 3 or 24 h after the oral administration of CsA. When FEX was administered at 3 h after the administration of CsA, its plasma concentration increased regardless of whether it was administered intravenously or orally.

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (MRP2) is a member of a family of efflux transporters that are involved in biliary excretion of organic anions from hepatocytes. Disrupted canalicular localization and decreased protein expression of MRP2 have been observed in patients with chronic cholestatic disorder and hepatic failure without a change in its mRNA expression. We have previously demonstrated that post-transcriptional regulation of the rapid retrieval of rat MRP2 from the canalicular membrane to the intracelluar compartment occurs under conditions of acute (~30min) oxidative stress.

View Article and Find Full Text PDF

Cyclosporin A (CsA) causes a number of clinically relevant drug-drug interactions (DDIs) by inhibiting OATP1B1 and OATP1B3. In the present study, long-lasting inhibitory effects of CsA on these transporters were examined in comparison to tacrolimus (TCR). OATP1B1- and OATP1B3-expressing HEK293T cells, OATP1B1-expressing MDCK II cells, and human hepatocytes were preincubated with CsA or TCR, and uptake studies were carried out in their presence or absence.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a major reason for the dropout of candidate compounds from drug testing and the withdrawal of pharmaceuticals from clinical use. Among the various mechanisms of liver injury, the accumulation of bile acids (BAs) within hepatocytes is thought to be a primary mechanism for the development of DILI. Although bile salt export pump (BSEP) dysfunction is considered a susceptibility factor for DILI, little is known about the relationship between drug-induced BSEP dysfunction and BA-dependent hepatotoxicity.

View Article and Find Full Text PDF

Oxidative stress is a feature of cholestatic syndrome and induces multidrug resistance-associated protein 2 (Mrp2) internalization from the canalicular membrane surface. We have previously shown that the activation of a novel protein kinase C (nPKC) by oxidative stress regulates Mrp2 internalization. The internalized Mrp2 was recycled to the canalicular surface in a protein kinase A (PKA)-dependent manner after intracellular glutathione (GSH) levels were replenished.

View Article and Find Full Text PDF

Purpose: Letrozole is an orally active aromatase inhibitor for the treatment of breast cancer. The objectives of this study were to examine the pharmacokinetic profile of letrozole in Japanese subjects and to identify factors that influence variability in the pharmacokinetics of letrozole using population pharmacokinetic (PPK) analysis.

Methods: Twenty-five healthy postmenopausal Japanese women were enrolled in the study and received 2.

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (Mrp2) is an ATP-dependent export pump that mediates the formation of bile-salt-independent bile flow. Disruption of the canalicular localization of Mrp2, without changes in its expression, is observed in chronic liver failure and is accompanied by oxidative stress. We reported previously that Mrp2 is rapidly internalized from the canalicular membrane during acute oxidative stress induced by lipopolysaccharide (LPS) in the rat liver.

View Article and Find Full Text PDF