Background: The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T.
View Article and Find Full Text PDFTrichoderma reesei is a widely used host for producing cellulase and hemicellulase cocktails for lignocellulosic biomass degradation. Here, we report a genetic modification strategy for industrial T. reesei that enables enzyme production using simple glucose without inducers, such as cellulose, lactose and sophorose.
View Article and Find Full Text PDFAlkaline phosphatase (ALP) is an enzyme commonly used as an undifferentiated marker of embryonic stem cells (ESCs). Although noninvasive ALP detection has long been desired for stem cell research and in cell transplantation therapy, little progress has been made in developing such techniques. In this study, we propose a noninvasive evaluation method for detecting ALP activity in mouse embryoid bodies (mEBs) using scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFMouse embryoid bodies (mEBs) were evaluated in detail on the basis of respiratory activity and high-throughput quantitative reverse transcription-PCR (RT-qPCR) analysis. The hanging drop culture method was applied to prepare various sizes of mEBs ranging from 100 to 250 μm in radius by causing the aggregation of embryonic cells. The respiratory activity of individual mEBs was noninvasively measured using scanning electrochemical microscopy in a cone-shaped microwell.
View Article and Find Full Text PDFIn this study, we developed a novel method for fabricating microwell arrays constructed from alginate gels, and the alginate gel microwells were used for three-dimensional (3D) cell culture. The alginate gel microwells were fabricated on a patterned ITO electrode using alginate gel electrodeposition. Embryonic stem (ES) cells or hepatocellular carcinoma cells (HepG2) were cultured in the alginate gel microwells containing 3T3 cells.
View Article and Find Full Text PDFThe differentiation status of single live embryonic stem (ES) cells was quantitatively evaluated by monitoring the activity of alkaline phosphatase (ALP), an undifferentiation marker of ES cells, using scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFBiosens Bioelectron
October 2013
A large scale integration (LSI)-based amperometric sensor is used for electrochemical evaluation and real-time monitoring of the alkaline phosphatase (ALP) activity of mouse embryoid bodies (EBs). EBs were prepared by the hanging drop culture of embryonic stem (ES) cells. The ALP activity of EBs with various sizes was electrochemically detected at 400 measurement points on a Bio-LSI chip.
View Article and Find Full Text PDFMulticellular spheroids of human breast cancer cells (MCF-7) formed with two different three-dimensional (3D) culture methods were evaluated in detail on the basis of respiratory activity and high-throughput gene expression analysis. The spheroids formed with poly(dimethylsiloxane) (PDMS) microwell arrays indicated significant restriction of the spheroid size, whereas their respiratory activity was 2-fold greater than that formed with the hanging drop culture method. Fluidigm BioMark dynamic array was used for comprehensive and quantitative real-time polymerase chain reaction (qRT-PCR) analysis on the samples whose respiratory activity had been measured.
View Article and Find Full Text PDFIn this study, we fabricated a probe consisting of a carbon nanoelectrode and an Ag/AgCl reference electrode for detecting the activity of cells in single droplets. HeLa cells were confined into a single droplet, and the alkaline phosphatase (ALP) activity of the cells was electrochemically measured using the probe inserted into the droplet. The ALP of the confined cells catalyzed the hydrolysis of p-aminophenyl phosphate (PAPP) to yield p-aminophenol (PAP) that gave electrochemical responses.
View Article and Find Full Text PDFWe propose a novel electrochemical detection system for alkaline phosphatase (ALP) activity using the difference in water and oil solubilities between the substrate, ferrocene ethyl phosphate ester (FcEtOPO(3)(2-)), and the enzymatic product, ferroceneethanol (FcEtOH). In this system, water droplets containing ALP and FcEtOPO(3)(2-) were placed on a Pt disk microelectrode and surrounded by a mineral oil. By the ALP-catalyzed reaction, FcEtOPO(3)(2-) was converted to FcEtOH, which was then transferred to the mineral oil from the water droplets with FcEtOPO(3)(2-) remaining in the water droplets.
View Article and Find Full Text PDFThis report describes the electrochemical detection of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device consisting of 256 sensors. The time-course analyses showed that the redox compound in the droplet was dynamically changed during droplet evaporation or mass transfer through a water/oil interface.
View Article and Find Full Text PDFA Pt layer/Pt disk electrode configuration was used as a scanning electrochemical microscopy (SECM) probe. The glass seal part of the insulator was covered with a Pt layer to form an exposed pseudo reference electrode. In a HEPES-based medium at pH 7.
View Article and Find Full Text PDF