Connexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) beiging in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of Gja1 (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the Dermo1/Twist2 promoter led to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high-fat diet (HFD) in both sexes.
View Article and Find Full Text PDFConnexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) "beiging" in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the promoter leads to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high fat diet (HFD) in both sexes.
View Article and Find Full Text PDFThe high cardiovascular mortality associated with chronic kidney disease (CKD) is caused in part by the CKD-mineral bone disorder (CKD-MBD) syndrome. The CKD-MBD consists of skeletal, vascular and cardiac pathology caused by metabolic derangements produced by kidney disease. The prevalence of osteopenia/osteoporosis resulting from the skeletal component of the CKD-MBD, renal osteodystrophy (ROD), in patients with CKD exceeds that of the general population and is a major public health concern.
View Article and Find Full Text PDFWe examined activin receptor type IIA (ActRIIA) activation in chronic kidney disease (CKD) by signal analysis and inhibition in mice with Alport syndrome using the ActRIIA ligand trap RAP-011 initiated in 75-day-old Alport mice. At 200 days of age, there was severe CKD and associated Mineral and Bone Disorder (CKD-MBD), consisting of osteodystrophy, vascular calcification, cardiac hypertrophy, hyperphosphatemia, hyperparathyroidism, elevated FGF23, and reduced klotho. The CKD-induced bone resorption and osteoblast dysfunction was reversed, and bone formation was increased by RAP-011.
View Article and Find Full Text PDFThe causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. New advances in the causes of the CKD-MBD are discussed in this review. They demonstrate that repair and disease processes in the kidneys release factors to the circulation that cause the systemic complications of CKD.
View Article and Find Full Text PDFDysregulation of skeletal remodeling is a component of renal osteodystrophy. Previously, we showed that activin receptor signaling is differentially affected in various tissues in chronic kidney disease (CKD). We tested whether a ligand trap for the activin receptor type 2A (RAP-011) is an effective treatment of the osteodystrophy of the CKD-mineral bone disorder.
View Article and Find Full Text PDFThe causes of cardiovascular mortality associated with chronic kidney disease (CKD) are partly attributed to the CKD-mineral bone disorder (CKD-MBD). The causes of the early CKD-MBD are not well known. Our discovery of Wnt (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical.
View Article and Find Full Text PDFDeficiency of Sirtuin 6 (SIRT6), a chromatin-related deacetylase, in mice reveals severe premature aging phenotypes including osteopenia. However, the underlying molecular mechanisms of SIRT6 in bone metabolism are unknown. Here we show that SIRT6 deficiency in mice produces low-turnover osteopenia caused by impaired bone formation and bone resorption, which are mechanisms similar to those of age-related bone loss.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
July 2015
Purpose Of Review: The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. The causes of the CKD-MBD are not well known and they will be discussed in this review
Recent Findings: The discovery of WNT (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair and participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical, leading to the finding that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, where it stimulates fibrosis, and decreases tubular klotho expression.
In chronic kidney disease, vascular calcification, renal osteodystrophy, and phosphate contribute substantially to cardiovascular risk and are components of CKD-mineral and bone disorder (CKD-MBD). The cause of this syndrome is unknown. Additionally, no therapy addresses cardiovascular risk in CKD.
View Article and Find Full Text PDFRecently, microRNAs (miRs) have been implicated in bone formation and homeostasis. We previously reported that Dicer generated miRs have pivotal roles in differentiation and activity of osteoclasts. However, recent studies have demonstrated that Dicer is implicated in production of endogenous small interfering RNAs, non-canonical miRs, and other small RNAs in mammals.
View Article and Find Full Text PDFThe chronic kidney disease-mineral and bone disorder (CKD-MBD) syndrome is an extremely important complication of kidney diseases. Here we tested whether CKD-MBD causes vascular calcification in early kidney failure by developing a mouse model of early CKD in a background of atherosclerosis-stimulated arterial calcification. CKD equivalent in glomerular filtration reduction to human CKD stage 2 stimulated early vascular calcification and inhibited the tissue expression of α-klotho (klotho) in the aorta.
View Article and Find Full Text PDFEstrogen inhibits osteoclastogenesis and induces osteoclastic apoptosis; however, the molecular mechanisms remain controversial. Recently, a group has demonstrated that osteoclasts are a direct target for estrogen because estrogen stimulates transcription of the Fas Ligand (FasL) gene in osteoclasts, which in turn causes cell death through an autocrine mechanism. In contrast, other groups have shown that the cells are an indirect target for estrogen because estrogen fails to stimulate the transcription of that in osteoclasts.
View Article and Find Full Text PDFRisk factors for disease states are rigorously defined. This analysis considers the definition of a risk factor as applied to the question of whether the serum phosphorus level is a risk factor for cardiovascular disease. Observational studies strongly suggest that phosphorus is associated with cardiovascular risk, and definitive prospective animal studies are supportive.
View Article and Find Full Text PDFRisk factors for disease states are rigorously defined. This analysis considers the definition of a risk factor as applied to the question of whether the serum phosphorus level is a risk factor for cardiovascular disease. Observational studies strongly suggest that phosphorus is associated with cardiovascular risk, and definitive prospective animal studies are supportive.
View Article and Find Full Text PDFMicroRNAs (miRs) are small noncoding RNAs that principally function in the spatiotemporal regulation of protein translation in animal cells. Although emerging evidence suggests that some miRs play important roles in osteoblastogenesis and skeletal homeostasis, much less is known in osteoclastogenesis. Here, we show that receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis is mediated by miR-21.
View Article and Find Full Text PDFMicro-RNAs (miRNAs) are important in regulating cell fate determination because many of their target mRNA transcripts are engaged in cell proliferation, differentiation, and apoptosis. DGCR8, Dicer, and Ago2 are essential factors for miRNA homeostasis. Here we show that these three factors have critical roles in osteoclast differentiation and function.
View Article and Find Full Text PDFHyperphosphatemia and vascular calcification have emerged as cardiovascular risk factors among those with chronic kidney disease. This study examined the mechanism by which phosphorous stimulates vascular calcification, as well as how controlling hyperphosphatemia affects established calcification. In primary cultures of vascular smooth muscle cells derived from atherosclerotic human aortas, activation of osteoblastic events, including increased expression of bone morphogenetic protein 2 (BMP-2) and the transcription factor RUNX2, which normally play roles in skeletal morphogenesis, was observed.
View Article and Find Full Text PDFAkt, also known as protein kinase B, is a serine/threonine protein kinase with antiapoptotic activities; also, it is a downstream target of phosphatidylinositol 3-kinase. Here we show that Akt1/Akt2 play a critical role in osteoclast differentiation but not cell survival and that mammalian target of rapamycin (mTOR) and Bim, a pro-apoptotic Bcl-2 family member, are required for cell survival in isolated osteoclast precursors. To investigate the function of Akt1, Akt2, mTOR, and Bim, we employed a retroviral system for delivery of small interfering RNA into cells.
View Article and Find Full Text PDFWe have evaluated effects of a phosphodiesterase (PDE) 4 inhibitor on retinoic acid-increased alkaline phosphatase activity in the mouse fibroblastic C3H10T1/2 clone 8 (10T1/2) cell line. 10T1/2 cells were cultured in minimum essential medium (MEM) and 10% fetal bovine serum with or without 1 microM retinoic acid and/or the PDE 4 inhibitor, rolipram, and harvested at specific intervals before measurement of alkaline phosphatase activity, cAMP production in response to parathyroid hormone, osteocalcin synthesis and expression, and phosphodiesterase activity. Retinoic acid-increased alkaline phosphatase activity, and slightly enhanced cAMP production in response to parathyroid hormone.
View Article and Find Full Text PDFPTEN (also known as MMAC-1 or TEP-1) is a frequently mutated tumor suppressor gene in human cancer. PTEN functions have been identified in the regulation of cell survival, growth, adhesion, migration, and invasiveness. Here, we characterize the diverse signaling networks modulated by PTEN in osteoclast precursors stimulated by RANKL and osteopontin (OPN).
View Article and Find Full Text PDF