Publications by authors named "Toshie Yaguchi"

Scanning/transmission electron microscopy (STEM) is a powerful characterization tool for a wide range of materials. Over the years, STEMs have been extensively used for in situ studies of structural evolution and dynamic processes. A limited number of STEM instruments are equipped with a secondary electron (SE) detector in addition to the conventional transmitted electron detectors, i.

View Article and Find Full Text PDF

During the in situ transmission electron microscopy (TEM) observations, the diverse functionalities of different specimen holders play a crucial role. We hereby provide a comprehensive overview of the main types of holders, associated technologies and case studies pertaining to the widely employed heating and gas heating methods, from their initial developments to the latest advancement. In addition to the conventional approaches, we also discuss the emergence of holders that incorporate a micro-electro-mechanical system (MEMS) chip for in situ observations.

View Article and Find Full Text PDF
Article Synopsis
  • Sulfide-based solid electrolytes (SEs) are crucial for next-generation all-solid-state batteries but suffer from poor stability when exposed to air, leading to toxic H2S generation and decreased ionic conductivity.
  • The research focused on understanding the degradation mechanisms of these SEs by using a specialized transmission electron microscope (TEM) designed for studying materials in an air-flow environment.
  • Findings revealed that exposure to air causes significant morphological changes and the decomposition of lithium tin sulfide (Li4SnS4) due to reactions with moisture, highlighting the importance of the developed TEM system in studying the stability of sulfide-based SEs.
View Article and Find Full Text PDF
Article Synopsis
  • - The process of synthesizing advanced ceramic materials from powder precursors is often complicated and requires careful design of reaction conditions due to the unpredictable nature of precursor interactions and intermediates.
  • - Researchers utilized ab initio thermodynamics to determine the most reactive precursor pairs, which allowed them to better understand the formation of non-equilibrium intermediates during the initial stages of solid-state reactions.
  • - By replacing the traditional BaCO precursor with BaO in the synthesis of YBa Cu O (YBCO), the study showed that phase evolution could be directed through a faster process, reducing synthesis time from over 12 hours to just 30 minutes, emphasizing the importance of precursor selection in ceramic synthesis.
View Article and Find Full Text PDF

Electron tomography (ET) has been used for quantitative measurement of shape and size of objects in three dimensions (3D) for many years. However, systematic investigation of repeatability and reproducibility of ET has not been evaluated in detail. To assess the reproducibility and repeatability of a protocol for measuring size and three-dimensional (3D) shape parameters for nanoparticles (NPs) by ET, an inter-laboratory comparison (ILC) has been performed.

View Article and Find Full Text PDF

Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell.

View Article and Find Full Text PDF

Quantitative modeling for high-resolution (phase contrast) gas cell environmental transmission electron microscopy (ETEM) imaging is presented in this paper. Concepts of pre-specimen scattering object (PreSO) and post-specimen scattering object (PoSO) are introduced to explain electron scattering caused by gas and window membranes associated with the gas environmental cell (E-cell). PreSO preserves the structural phase information and the effect can be evaluated by averaging the contrast transfer functions (CTFs) over random electron scattering.

View Article and Find Full Text PDF
Article Synopsis
  • The study utilized in situ high temperature transmission electron microscopy (TEM) to examine how moisture affects the structural changes of heated nano materials, specifically platinum catalysts on carbon black (Pt/CB).
  • High moisture content (above 94% RH) was introduced, revealing that platinum particles moved and clustered together before the degradation of the carbon black support, while at low moisture (34% RH), the carbon black degraded first.
  • The findings indicate that the level of humidity significantly influences the behavior of the platinum particles and the stability of the carbon black support when subjected to heat.!*
View Article and Find Full Text PDF

An environmental cell for high-temperature, high-resolution transmission electron microscopy of nanomaterials in near atmospheric pressures is developed. The developed environmental cell is a side-entry type with built-in specimen-heating element and micropressure gauge. The relationship between the cell condition and the quality of the transmission electron microscopic (TEM) image and the diffraction pattern was examined experimentally and theoretically.

View Article and Find Full Text PDF

A technique for preparation of a pillar-shaped specimen and its multidirectional observation using a combination of a scanning transmission electron microscope (STEM) and a focused ion beam (FIB) instrument has been developed. The system employs an FIB/STEM compatible holder with a specially designed tilt mechanism, which allows the specimen to be tilted through 360 degrees [T. Yaguchi, M.

View Article and Find Full Text PDF

A specimen heating holder equipped with a gas injector and an evaporator has been developed for use with conventional transmission electron microscopes (TEMs). The developed specimen holder allows both synthesis of metal oxide support and deposition of catalyst nano-particles in situ. Since the holder is designed to be used in small gapped high-resolution objective lens pole-piece, all the procedure from the synthesis of support material to the deposition of catalyst as well as the behavior of the catalyst nano-particles on the support can be observed at near atomic resolution.

View Article and Find Full Text PDF

A new gas injection/specimen heating holder is developed for the purpose of in situ observation of gas reaction of materials at high temperatures in a transmission electron microscope at near-atomic resolution. A fine tungsten wire is employed as a heating element of the holder and a battery is used as the power source. Gas was injected onto specimens in the form of particles lying on the heating element via a nozzle.

View Article and Find Full Text PDF

A technique for high resolution transmission electron microscopic (TEM) observation of nano-materials at very high temperatures has been developed. A spirally wound tungsten wire, normally used as the heating element of a high resolution-high temperature-specimen heating holder, was coated with a thin carbon film and the carbon film was used as the substrate of nanometer-sized specimen. The carbon film was securely self-adhered on the heater and the form of the carbon film remained unchanged until the tungsten heater is heated to around 1173 K.

View Article and Find Full Text PDF

Interaction between multi-walled carbon nanotubes (MWNTs) and deposited gold nano-particles has been dynamically observed in a 200 kV transmission electron microscope (TEM) using a specimen heating holder. Gold particles with diameters of several tens of microns were mixed with MWNTs to mount on the heating element of a specimen heating holder. The gold particles were instantaneously heated to 1373 K to deposit gold nano-particles on the MWNTs from a very short distance.

View Article and Find Full Text PDF

A new technique has been developed for the three-dimensional structure characterisation of a specific site at atomic resolution. In this technique, a focused ion beam (FIB) system is used to extract a specimen from a desired site as well as to fabricate the electron transparent specimen. A specimen holder with a specimen stage rotation mechanism has also been developed for use with both an FIB system and a high-resolution transmission electron microscope (TEM).

View Article and Find Full Text PDF

The combination of a focused ion beam (FIB) system and a scanning transmission electron microscope (STEM) has been applied to the three-dimensional (3D) observation of a resin-embedded yeast cell. Using a FIB microsampling technique, a sample with a thickness of tens of micrometres was extracted from a resin-embedded block sample. The extracted sample was transferred to a FIB-STEM-compatible specimen rotation holder and trimmed by FIB milling for 3D STEM observation.

View Article and Find Full Text PDF

Transmission electron microscopy (TEM) samples of an Mg-Al alloy has been prepared using a Ga-focused ion beam (FIB) milling at two different operating voltages of 10 kV and 40 kV to investigate the influence of the FIB energy on the sample quality. The fine structures of the samples have been studied using a high resolution TEM, and the concentration of the implanted Ga was analysed using an energy dispersive X-ray (EDX) analysis. The result of the TEM observation revealed that point defects were introduced to the sample finally milled at 40 kV but not at 10 kV.

View Article and Find Full Text PDF

A gallium (Ga) focused ion beam (FIB) has been applied increasingly to 'site-specific' preparation of cross-sectional samples for transmission electron microscopy (TEM), scanning TEM, scanning electron microscopy and scanning ion microscopy. It is absolutely required for FIB cross-sectioning to prepare higher-quality samples in a shorter time without sacrificing the site specificity. The present paper clarifies the parameters that impose limitation on the following performances of the FIB cross-sectioning: milling rate, cross-sectioning at a right angle with respect to the sample surface, curtain structures formed on the cross sections, ion implantation and ion damage.

View Article and Find Full Text PDF

Cesium encapsulation inside single-walled carbon nanotubes (SWNTs) is for the first time realized by ion irradiation of SWNTs immersed in a magnetized alkali-metal plasma, the configuration of which is confirmed to comprise three varieties by field emission type transmission electron microscopy (FE-TEM) and scanning TEM (STEM) observation.

View Article and Find Full Text PDF

In this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out.

View Article and Find Full Text PDF