Zebrafish caudal fin rays are used as a model system for regeneration because of their high regenerative ability, but studies on the regeneration polarity of the fin ray are limited. To investigate this regeneration polarity, we made a hole to excise part of the fin ray and analyzed the regeneration process. We confirmed that the fin rays always regenerated from the proximal margin toward the distal margin, as previously reported; however, regeneration-related genes were expressed at both the proximal and distal edges of the hole in the early stage of regeneration, suggesting that the regenerative response also occurs at the distal edge.
View Article and Find Full Text PDFFish have a high ability to regenerate fins, including the caudal fin. After caudal fin amputation, original bi-lobed morphology is reconstructed during its rapid regrowth. It is still controversial whether positional memory in the blastema cells regulates reconstruction of fin morphology as in amphibian limb regeneration, in which limb blastema cells located at the same proximal-distal level have the same positional identity.
View Article and Find Full Text PDFBackground: Teleost paired fins are composed of two endoskeletal domains, proximal and distal radials, and an exoskeletal domain, the fin ray. The zebrafish pectoral fin displays elaborately patterned radials along the anteroposterior (AP) axis. Radials are considered homologous to tetrapod limb skeletons, and their patterning mechanisms in embryonic development are similar to those of limb development.
View Article and Find Full Text PDF