Publications by authors named "Toshiaki Sakisaka"

Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor.

View Article and Find Full Text PDF

The reticular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions and undergoes constant remodeling through formation and loss of the three-way junctions. Transmembrane and coiled-coil domain family 3 (TMCC3), an ER membrane protein localizing at three-way junctions, has been shown to positively regulate formation of the reticular ER network. However, elements that negatively regulate TMCC3 localization have not been characterized.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) tubules are interconnected by three-way junctions, resulting in the formation of a tubular ER network. Lunapark (Lnp) localizes to and stabilizes the three-way junctions. The N-terminal cytoplasmic domain in Lnp has a ubiquitin ligase activity.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) contains various enzymes that metabolize fatty acids (FAs). Given that FAs are the components of membranes, FA metabolic enzymes might be associated with regulation of ER membrane functions. However, it remains unclear whether there is the interplay between FA metabolic enzymes and ER membrane proteins.

View Article and Find Full Text PDF

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) tubules connect each other by three-way junctions, resulting in a tubular ER network. Oligomerization of three-way junction protein lunapark (Lnp) is important for its localization and the three-way junction stability. On the other hand, Lnp has an N-terminal ubiquitin ligase activity domain, which is also important for the three-way junction localization.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is shaped by a class of membrane proteins containing reticulon homology domain (RHD), the conserved hydrophobic domain encompassing two short hairpin transmembrane domains. RHD resides in the outer leaflet of the ER membrane, generating high-curvature ER membrane. While most of the membrane proteins destined to enter the secretory pathway are cotranslationally targeted and inserted into ER membrane, the molecular mechanism how the RHD-containing proteins are targeted and inserted into the ER membrane remains to be clarified.

View Article and Find Full Text PDF

Sec22c has been characterized as an endoplasmic reticulum (ER)-localized transmembrane protein involved in regulation of the vesicle transport between the ER and the Golgi. Sec22c has several isoforms generated by alternative splicing that changes the number of the C-terminal transmembrane domains (TMDs). However, the physiological significance of the splicing remains unknown.

View Article and Find Full Text PDF

The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model.

View Article and Find Full Text PDF

Tail-anchored (TA) proteins, a class of membrane proteins having an N-terminal cytoplasmic region anchored to the membrane by a single C-terminal transmembrane domain, are posttranslationally inserted into the endoplasmic reticulum (ER) membrane. In yeasts, the posttranslational membrane insertion is mediated by the Guided Entry of TA Proteins (GET) complex. Get3, a cytosolic ATPase, targets newly synthesized TA proteins to the ER membrane, where Get2 and Get3 constitute the Get3 receptor driving the membrane insertion.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) is an organelle that has an elaborate and continuous membrane system composed of sheet-like cisternae and a network of interconnected tubules. The ER tubules are shaped by reticulons, a conserved ER membrane protein family. However, how the membrane-shaping activity is regulated remains to be elucidated.

View Article and Find Full Text PDF

The vesicle-associated membrane protein-associated protein B (VAP-B) is a tail-anchored protein in the endoplasmic reticulum (ER). VAP-B functions as an adaptor protein to recruit target proteins to the ER and execute various cellular functions, lipid transport, membrane traffic, ER stress etc. Recently, VAP-B has been shown to regulate the nuclear envelope protein transport through the ER-Golgi intermediate compartment (ERGIC).

View Article and Find Full Text PDF

Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components.

View Article and Find Full Text PDF

The ER (endoplasmic reticulum) consists of the nuclear envelope and a peripheral network of membrane sheets and tubules. Two classes of the evolutionarily conserved ER membrane proteins, reticulons and REEPs (receptor expression-enhancing proteins)/DP1 (deleted in polyposis locus 1)/Yop1 (YIP 1 partner), shape high-curvature ER tubules. In mammals, four members of the reticulon family and six members of the REEP family have been identified so far.

View Article and Find Full Text PDF

We describe a novel spontaneous mouse mutant, laggard (lag), characterized by a flat head, motor impairment and growth retardation. The mutation is inherited as an autosomal recessive trait, and lag/lag mice suffer from cerebellar ataxia and die before weaning. lag/lag mice exhibit a dramatic reduction in brain size and slender optic nerves.

View Article and Find Full Text PDF

Tail-anchored (TA) membrane proteins destined for the secretory pathway are posttranslationally inserted into the endoplasmic reticulum (ER) membrane, but the molecular machinery for this insertion in mammalian cells remains elusive. Here we reveal a mammalian protein complex that drives the membrane insertion. We identify calcium-modulating cyclophilin ligand (CAML) as a mammal-specific receptor for TRC40, an ATPase targeting newly synthesized TA proteins, and show that CAML mediates membrane insertion of TA proteins.

View Article and Find Full Text PDF

The nectin family of Ca2+-independent immunoglobulin-like cell-cell adhesion molecules contains four members. Nectins, which have three Ig-like domains in their extracellular region, form cell-cell adherens junctions cooperatively with cadherins. The whole extracellular regions of nectin-1 (nectin-1-EC) and nectin-2 (nectin-2-EC) were expressed in Escherichia coli as inclusion bodies, solubilized in 8 M urea and then refolded by rapid dilution into refolding solution.

View Article and Find Full Text PDF

In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells.

View Article and Find Full Text PDF

During neurite outgrowth, Rho small G protein activity is spatiotemporally regulated to organize the neurite sprouting, extension, and branching. We have previously identified a potent Rho GTPase-activating protein (GAP), RA-RhoGAP, as a direct downstream target of Rap1 small G protein in the neurite outgrowth. In addition to the Ras-associating (RA) domain for Rap1 binding, RA-RhoGAP has the pleckstrin homology (PH) domain for lipid binding.

View Article and Find Full Text PDF
Article Synopsis
  • * Tomosyn negatively regulates this process by binding and sequestering SNARE proteins, specifically through its C-terminal VAMP-like domain, while its N-terminal WD40 repeats also inhibit neurotransmitter release but the mechanism is still not fully understood.
  • * Research shows that tomosyn's N-terminal WD40 repeats can directly bind to synaptotagmin-1 in a Ca(2+)-dependent manner, preventing it from effectively promoting membrane fusion and reducing neurotransmitter release, establishing a regulatory relationship
View Article and Find Full Text PDF

Neurotransmitter release is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn sequesters target SNAREs (t-SNAREs) through its C-terminal VAMP-like domain (VLD). Cumulative biochemical results suggest that the tomosyn-SNARE complex is so tight that VAMP2 cannot displace tomosyn.

View Article and Find Full Text PDF

In the hippocampus, synapses are formed between mossy fiber terminals and CA3 pyramidal cell dendrites and comprise highly developed synaptic junctions (SJs) and puncta adherentia junctions (PAJs). Dynamic remodeling of synapses in the hippocampus is implicated in learning and memory. Components of both the nectin-afadin and cadherin-catenin cell adhesion systems exclusively accumulate at PAJs.

View Article and Find Full Text PDF

Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those of epithelial cells.

View Article and Find Full Text PDF