We used a neuromusculoskeletal model of bipedal walking to examine the effects of foot-ground friction conditions and gait patterns on slip- and trip-induced falls. We developed three two-dimensional neuro-musculoskeletal models in a self-organized manner representing young adults, elderly non-fallers, and elderly fallers. We simulated walking under different foot-ground friction conditions.
View Article and Find Full Text PDFIn this study, we developed a lightweight shoe sensor system equipped with four high-capacity, compact triaxial force sensors and an inertial measurement unit. Remarkably, this system enabled measurements of localized three-directional ground reaction forces (GRFs) at each sensor position (heel, first and fifth metatarsal heads, and toe) and estimations of stride length and toe clearance during walking. Compared to conventional optical motion analysis systems, the developed sensor system provided relatively accurate results for stride length and minimum toe clearance.
View Article and Find Full Text PDFThis study employed a digital image correlation method (DICM) to experimentally quantify horizontal strain distribution in silicone rubber bulk during horizontal displacement against a stainless-steel sphere with/without glycerol. The strain distribution at different depth levels was measured by capturing the position of white powders in transparent rubber bulk. The experimental results indicated that each point in the rubber bulk moved while describing a horizontal loop during horizontal displacement depending on the position and lubrication conditions.
View Article and Find Full Text PDFSlippery surfaces due to oil spills pose a significant risk in various environments, including industrial workplaces, kitchens, garages, and outdoor areas. These situations can lead to accidents and falls, resulting in injuries that range from minor bruises to severe fractures or head trauma. To mitigate such risks, the use of slip resistant footwear plays a crucial role.
View Article and Find Full Text PDFHigh slip-resistant footwear outsoles can reduce the risk of slip and fall on wet and icy surfaces. Falls on wet and icy surfaces can cause serious life-threatening injuries, especially for older adults. Here we show that footwear outsoles using the rubbers filled with activated carbon or sodium chloride produce higher friction force and reduce the slip rate in walking.
View Article and Find Full Text PDF