Publications by authors named "Toshia Fujisato"

Since 3D-EM closely resembles in vivo muscles, the aim of this study was to investigate the effects of exercise (electrical pulse stimulation (EPS)) and nutrition (maca), which contains triterpenes, on muscle hypertrophy by using 3D-EM for the first time. The 3D-EM was composed of C2C12 cells and type 1 collagen gel, was differentiated for 14 days, and was divided into four groups: control, maca, EPS, and maca + EPS. The medium was replaced every two days before each EPS intervention, and the concentration of maca in the culture solution was 1 mg/mL.

View Article and Find Full Text PDF

Brain function-related myokines, such as lactate, irisin, and cathepsin B (CTSB), are upstream factors that control brain-derived neurotrophic factor (BDNF) expression and are secreted from skeletal muscle by exercise. However, whether irisin and CTSB are secreted by muscle contraction remains controversial. Three-dimensional (3D)-engineered muscle (3D-EM) may help determine whether skeletal muscle contraction leads to the secretion of irisin and CTSB, which has never been identified with the addition of drugs in conventional 2D muscle cell cultures.

View Article and Find Full Text PDF

Three-dimensional (3D)-engineered muscle is an useful approach to a more comprehensive understanding of molecular mechanisms underlying unloading-induced muscle atrophy. We investigated the effects of mechanical unloading on molecular muscle protein synthesis (MPS)- and muscle protein breakdown (MPB)-related signaling pathways involved in muscle atrophy in 3D-engineered muscle, and to better understand in vitro model of muscle disuse. The 3D-engineered muscle consisting of C2C12 myoblasts and type-1 collagen gel was allowed to differentiate for 2 wk and divided into three groups: 0 days of stretched-on control (CON), 2 and/or 7 days of stretched-on (ON), in which both ends of the muscle were fixed with artificial tendons, and the stretched-off group (OFF), in which one side of the artificial tendon was detached.

View Article and Find Full Text PDF

At high altitudes, the hypoxic atmosphere decreases the oxygen partial pressure in the body, inducing several metabolic changes in tissues and cells. Furthermore, it exerts potent anorectic effects, thus causing an energy deficit. Two decades ago, a marked increase in the resting level of plasma cholecystokinin (CCK) was observed in humans at the Mt.

View Article and Find Full Text PDF

The effects of heat stress on tissue like skeletal muscle have been widely studied. However, the mechanism responsible for the effect of heat stress is still unclear. A useful experimental tissue model is necessary because muscle function in cell culture may differ from native muscle and measuring its contractility is difficult.

View Article and Find Full Text PDF

We are developing a novel skin regeneration therapy in which the inactivation of nevus tissue via high hydrostatic pressure (HHP) is used in the reconstruction of the dermis in combination with a cultured epidermal autograft. In this study, we used a porcine skin graft model to explore whether autologous skin including cellular debris inactivated by HHP or allogeneic skin decellularized by HHP is better for dermal reconstruction. Grafts (n = 6) were prepared for five groups each: autologous skin without pressurization group (control group), autologous skin inactivated by 200 MPa group, autologous skin inactivated by 1000 MPa group, allogeneic skin decellularized by 200 MPa group, and allogeneic skin decellularized by 1000 MPa group.

View Article and Find Full Text PDF

We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP) higher than 200 MPa and that human cultured epidermis (hCE) engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa).

View Article and Find Full Text PDF

Tissue-engineered skeletal muscles were potentially useful as physiological and biochemical in vitro models. Currently, most of the similar models were constructed without tendons. In this study, we aimed to develop a simple, highly versatile tissue-engineered muscle with artificial tendons, and to evaluate the contractile, histological and molecular dynamics during differentiation.

View Article and Find Full Text PDF

High hydrostatic pressure (HHP) technology is a physical method for inactivating tissue. We reported that nevus specimens were inactivated after HHP at 200 MPa and that the inactivated nevus could be used as autologous dermis for covering skin defects. In this study, we verified the inactivation of nevus specimens using a newly developed portable HHP device which will be used in a clinical trial.

View Article and Find Full Text PDF

We previously reported that exposure to a high hydrostatic pressure (HHP) of 200 MPa could completely inactivate porcine skin without damaging the extracellular matrix. In this study, we used an autologous porcine skin graft model and explored whether the skin inactivated by HHP could be engrafted without inflammation to the residual cellular components. Twenty-one full-thickness skin grafts of 1.

View Article and Find Full Text PDF

We have reported that high-hydrostatic-pressure (HHP) technology is safe and useful for producing various kinds of decellularized tissue. However, the preparation of decellularized or inactivated skin using HHP has not been reported. The objective of this study was thus to prepare inactivated skin from human skin using HHP, and to explore the appropriate conditions of pressurization to inactivate skin that can be used for skin reconstruction.

View Article and Find Full Text PDF

Giant congenital melanocytic nevi are intractable lesions associated with a risk of melanoma. High hydrostatic pressure (HHP) technology is a safe physical method for producing decellularized tissues without chemicals. We have reported that HHP can inactivate cells present in various tissues without damaging the native extracellular matrix (ECM).

View Article and Find Full Text PDF

Soft tissue integration into a porous structure is important to prevent bacterial infection of percutaneous devices and improve tissue regeneration using porous scaffolds. Here, basic fibroblast growth factor (bFGF) was immobilized on porous polymer materials using a mild and biologically safe three-step reaction: (1) modification with a novel surface-modification peptide (penta-lysine-mussel adhesive sequence, which reacts with various matrices), (2) electrostatic binding of heparin with introduced penta-lysine, and (3) biologically specific binding of bFGF to heparin. Porous polyethylene specimens (PPSs) (D = 6.

View Article and Find Full Text PDF

We previously reported that high hydrostatic pressure (HHP) of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW), could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter.

View Article and Find Full Text PDF

Recently, decellularized tissues for organ transplantation and regeneration have been actively studied in the field of tissue engineering. In the decellularization process, surfactants such as sodium dodecyl sulfate (SDS) have been most commonly used to remove cellular components from the tissue. However, the residual surfactant may be cytotoxic in vivo and has been reported to hinder remodeling after implantation.

View Article and Find Full Text PDF

To evaluate the in vivo foreign body reaction to bio-inert 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers, MPC polymer-coated porous substrates, with large surface area, were implanted subcutaneously in mice for 7 and 28 days, and the surrounding tissue response and cells infiltrating into the porous structure were evaluated. The MPC polymer surface induced low angiogenesis and thin encapsulation around the porous substrate, and slightly suppressed cell infiltration into the porous substrate. M1-type macrophage specific gene (CCR7) expression was suppressed by the MPC polymer surface after 7 days, resulting in the suppression of inflammatory cytokine/chemokine gene expression.

View Article and Find Full Text PDF

Although artificial vessels are available for large diameter arteries, there are no artificial vessels for small diameter arteries of < 4 mm. We created a decellularized vascular scaffold (length, 10 mm; outer diameter, 1.5 mm; inner diameter, 1.

View Article and Find Full Text PDF

The contractility of tissue-engineered muscle on the application of electrical signals is required for the development of bio-actuators and for muscle tissue regeneration. Investigations have already reported on the contraction of myotubes differentiated from myoblasts and the construction of tissue-engineered skeletal muscle using electrical pulses. However, the relationship between myotube contraction and electrical pulses has not been quantitatively evaluated.

View Article and Find Full Text PDF