J Chromatogr B Analyt Technol Biomed Life Sci
March 2022
The International Conference on Harmonization guidelines for quality on pharmaceutical development recommends a systematic development approach including robustness studies which assure performance of manufacturing and analytical method development of drug product. It was demonstrated that the retention prediction model for nucleoside triphosphates (NTPs) on ion-pair reversed-phase HPLC was developed by a highly accurate Kawabe's model which supports the development of robust HPLC methods. As NTPs and its derivatives are typically used for Messenger ribonucleic acid (mRNA) vaccine production, adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), cytidine-5'-triphosphate (CTP), 5-methylcytidine-5'-triphosphate (m-CTP), uridine-5'-triphosphate (UTP), 5-methyluridine-5'-triphosphate (m-UTP), pseudouridine-5'-triphosphate (Ψ-UTP) and N1-methylpseudouridine-5'-triphosphate (mΨ-UTP) were applied for prediction model development.
View Article and Find Full Text PDFThe ICH guidance on pharmaceutical development recommends a systematic development approach including robustness studies which assure performance of manufacturing and analytical method development of drug product. The retention model by T. Kawabe et al have an excellent correlation between observed and predicted retention time in various kinds of pharmaceutical compounds during isocratic elution by the multiple regression modeling of solvent strength parameters.
View Article and Find Full Text PDFAn optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes.
View Article and Find Full Text PDFStress conditions for predicting oxidative degradation products in solid-state pharmaceutical compounds were investigated. 4-Methyl-2-(3,4-dimethylphenyl)-1-(4-sulfamoylphenyl)pyrrole, Compound A, was used as the model compound for this study and its four main degradation products were due to oxidation, as identified by LC-MS and LC-(1)H NMR. In order to develop a prediction system for the oxidation reaction, solid-state Compound A was stored under moisture-saturated conditions.
View Article and Find Full Text PDFTo develop new fluorescent derivatization reagents, we investigated the relationship between the chemical structures and the fluorescence quantum yields (phi(f)) of coumarins, quinoxalinones and benzoxadinones. Forty-six compounds were synthesized and their fluorescence spectra were measured in n-hexane, ethyl acetate, methanol and water. The energy levels of these compounds were calculated by combination of the semi-empirical AM1 and INDO/S (CI = all) methods.
View Article and Find Full Text PDFA microdialysis (MD) technique, combined with HPLC-fluorescence (FL) detection, was developed for the evaluation of the tissue-specific renin-angiotensin system (RAS) in the rat renal cortex. An MD probe constructed with a hydrophilic hollow fiber dialysis tubing, AN69, showed high recovery (more than 50%) in vitro for all four angiotensins: angiotensin I (Ang I), Ang II, Ang III, and Ang (1-7). Angiotensins, successfully derivatized with m-BS-ABD-F, a water-soluble fluorogenic reagent that has a 2,1,3-benzoxadiazole (benzofurazan) structure, could be simultaneously determined by coupled-column HPLC.
View Article and Find Full Text PDF