Publications by authors named "Toshana L Foster"

RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules.

View Article and Find Full Text PDF

Nephropathis epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS), is an acute zoonotic disease endemic in the Republic of Tatarstan. This study aimed to assess the impact of rosuvastatin on the clinical and laboratory results of NE. A total of 61 NE patients and 30 controls were included in this study; 22 NE patients and 7 controls received a daily dose of rosuvastatin (10 mg) for ten consecutive days.

View Article and Find Full Text PDF

Nephropathia epidemica (NE), caused by the hantavirus infection, is endemic in Tatarstan Russia. The majority of patients are adults, with infection rarely diagnosed in children. This limited number of pediatric NE cases means there is an inadequate understanding of disease pathogenesis in this age category.

View Article and Find Full Text PDF

Identifying immunogenic targets of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to advance diagnostic and disease control strategies. We analyzed humoral (ELISA) and T-cell (ELISpot) immune responses to spike (S) and nucleocapsid (N) SARS-CoV-2 proteins as well as to human endemic coronavirus (eCoV) peptides in serum from convalescent coronavirus disease 2019 (COVID-19) patients from Tatarstan, Russia. We identified multiple SARS-CoV-2 peptides that were reactive with serum antibodies and T cells from convalescent COVID-19.

View Article and Find Full Text PDF

Early indications of the likelihood of severe coronavirus disease 2019 COVID-19 can influence treatments and could improve clinical outcomes. However, knowledge on the prediction markers of COVID-19 fatality risks remains limited. Here, we analyzed and quantified the reactivity of serum samples from acute (non-fatal and fatal) and convalescent COVID-19 patients with the spike surface glycoprotein (S protein) and nucleocapsid phosphoprotein (N protein) SARS-CoV-2 peptide libraries.

View Article and Find Full Text PDF

In the absence of effective vaccines and treatments, annual outbreaks of severe human haemorrhagic fever caused by arenaviruses, such as Lassa virus, continue to pose a significant human health threat. Understanding the balance of cellular factors that inhibit or promote arenavirus infection may have important implications for the development of effective antiviral strategies. Here, we identified the cell-intrinsic zinc transmembrane metalloprotease, ZMPSTE24, as a restriction factor against arenaviruses.

View Article and Find Full Text PDF

Nephropathia Epidemica (NE), endemic to several Volga regions of Russia, including the Republic of Tatarstan (RT) and the Republic of Mordovia (RM), is a mild form of hemorrhagic fever with renal syndrome caused by infection with rodent-borne orthohantaviruses. Although NE cases have been reported for decades, little is known about the hantavirus strains associated with human infection in these regions. There is also limited understanding of the pathogenesis of NE in the RT and the RM.

View Article and Find Full Text PDF

The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens.

View Article and Find Full Text PDF

Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR).

View Article and Find Full Text PDF

Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs.

View Article and Find Full Text PDF

Endemic to West Africa and South America, mammalian arenaviruses can cross the species barrier from their natural rodent hosts to humans, resulting in illnesses ranging from mild flu-like syndromes to severe and fatal haemorrhagic zoonoses. The increased frequency of outbreaks and associated high fatality rates of the most prevalent arenavirus, Lassa, in West African countries, highlights the significant risk to public health and to the socio-economic development of affected countries. The devastating impact of these viruses is further exacerbated by the lack of approved vaccines and effective treatments.

View Article and Find Full Text PDF

Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus relatives must enter cells in order to replicate and, once produced, new virions need to exit to spread to new targets. These processes require the virus to cross the plasma membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of budding virions during release. This physical barrier thus presents a perfect location for host antiviral restrictions that target enveloped viruses in general.

View Article and Find Full Text PDF

Type I interferon (IFN) signaling engenders an antiviral state that likely plays an important role in constraining HIV-1 transmission and contributes to defining subsequent AIDS pathogenesis. Type II IFN (IFN-γ) also induces an antiviral state but is often primarily considered to be an immunomodulatory cytokine. We report that IFN-γ stimulation can induce an antiviral state that can be both distinct from that of type I interferon and can potently inhibit HIV-1 in primary CD4 T cells and a number of human cell lines.

View Article and Find Full Text PDF

Interferon-induced transmembrane proteins (IFITMs) restrict the entry of diverse enveloped viruses through incompletely understood mechanisms. While IFITMs are reported to inhibit HIV-1, their in vivo relevance is unclear. We show that IFITM sensitivity of HIV-1 strains is determined by the co-receptor usage of the viral envelope glycoproteins as well as IFITM subcellular localization within the target cell.

View Article and Find Full Text PDF

HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1.

View Article and Find Full Text PDF

Unlabelled: Current interferon-based therapy for hepatitis C virus (HCV) infection is inadequate, prompting a shift toward combinations of direct-acting antivirals (DAA) with the first protease-targeted drugs licensed in 2012. Many compounds are in the pipeline yet primarily target only three viral proteins, namely, NS3/4A protease, NS5B polymerase, and NS5A. With concerns growing over resistance, broadening the repertoire for DAA targets is a major priority.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) p7 protein is critical for the efficient production of infectious virions in culture. p7 undergoes genotype-specific protein-protein interactions as well as displaying channel-forming activity, making it unclear whether the phenotypes of deleterious p7 mutations result from the disruption of one or both of these functions. Here, we showed that proton channel activity alone, provided in trans by either influenza virus M2 or genotype 1b HCV p7, was both necessary and sufficient to restore infectious particle production to genotype 2a HCV (JFH-1 isolate) carrying deleterious p7 alanine substitutions within the p7 dibasic loop (R33A, R35A), and the N-terminal trans-membrane region (N15 : C16 : H17/AAA).

View Article and Find Full Text PDF

NS5A plays a critical, yet poorly defined, role in hepatitis C virus genome replication. The protein consists of three domains, each of which is able to bind independently to the 3' untranslated region (UTR) of the viral positive strand genomic RNA. The peptidyl-prolyl isomerase cyclophilin A (CypA) binds to domain II, catalyzing cis-trans isomerization.

View Article and Find Full Text PDF

Unlabelled: The hepatitis C virus (HCV) p7 ion channel plays a critical role during infectious virus production and represents an important new therapeutic target. Its activity is blocked by structurally distinct classes of small molecules, with sensitivity varying between isolate p7 sequences. Although this is indicative of specific protein-drug interactions, a lack of high-resolution structural information has precluded the identification of inhibitor binding sites, and their modes of action remain undefined.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) nonstructural protein NS5A is critical for viral genome replication and is thought to interact directly with both the RNA-dependent RNA polymerase, NS5B, and viral RNA. NS5A consists of three domains which have, as yet, undefined roles in viral replication and assembly. In order to define the regions that mediate the interaction with RNA, specifically the HCV 3' untranslated region (UTR) positive-strand RNA, constructs of different domain combinations were cloned, bacterially expressed, and purified to homogeneity.

View Article and Find Full Text PDF

Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin.

View Article and Find Full Text PDF

Hepatitis C virus encodes an autoprotease, NS2-3, which is required for processing of the viral polyprotein between the non-structural NS2 and NS3 proteins. This protease activity is vital for the replication and assembly of the virus and therefore represents a target for the development of anti-viral drugs. The mechanism of this auto-processing reaction is not yet clear but the protease activity has been shown to map to the C-terminal region of NS2 and the N-terminal serine protease region of NS3.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) chronically infects 170 million individuals, causing severe liver disease. Although antiviral chemotherapy exists, the current regimen is ineffective in 50% of cases due to high levels of innate virus resistance. New, virus-specific therapies are forthcoming although their development has been slow and they are few in number, driving the search for new drug targets.

View Article and Find Full Text PDF