By means of one-dimensional, electromagnetic, particle-in-cell simulations considering the effects of energetic-ion injection, we study the harmonic structure of lower hybrid waves (LHWs) driven by energetic ions under the condition where the electron plasma frequency (ω_{pe}) is smaller than the electron cyclotron frequency (Ω_{e}). It is found that after the LHWs are excited with the wave number and frequency of (k_{1},ω_{1}), many harmonic LHWs are generated at (mk_{1},nω_{1}) where m and n are integers, up to far beyond the lower hybrid resonance frequency, m and n∼10. We show that the harmonic LHWs are generated by nonlinear wave-wave coupling between the LHWs directly excited by the energetic ions and the energetic-ion cyclotron waves above the lower hybrid resonance frequency.
View Article and Find Full Text PDFReducing high electron and ion heat fluxes is one of the critical issues for shielding satellites and spacecraft. One of the ideas for shielding high particle and heat fluxes is to apply an external magnetic field generated by injecting current filaments. In this work, we model a flow of plasma, which includes electrons and ions in a small region, by using two spatial dimensions and three coordinates for velocities (2D3V) Particle-In-Cell (PIC) code to study the effects of the injected current filaments on particle and heat fluxes to the wall.
View Article and Find Full Text PDF