A new restorer of fertility gene, Rfs, of Ogura cytoplasmic male sterility (CMS) in radish encodes a pentatricopeptide repeat protein that binds to 15 nucleotides in mRNA of the CMS gene, orf138. Nucleotide substitutions in both Rfs and orf138 determine effectiveness and specificity of restoration. Cytoplasmic male sterility (CMS) in plants caused by the expression of abnormal mitochondrial genes results from impaired pollen production.
View Article and Find Full Text PDFOnions are one of the most widely cultivated vegetables worldwide; however, the development and utilization of molecular markers have been limited because of the large genome of this plant. We present a genome-wide marker design workflow for onions and its application in a high-throughput genotyping method based on target amplicon sequencing. The efficiency of the method was evaluated by genotyping of F2 populations.
View Article and Find Full Text PDFThe mitochondrial gene , which is co-transcribed with and causes cytoplasmic male sterility in crops, is widely distributed across wild species and genera of Brassicaceae. However, to date, intraspecific variations in the presence of have not yet been studied, and the mechanisms underlying the wide distribution of the gene remain unclear. We analyzed the presence and sequence variations of in two wild species, and .
View Article and Find Full Text PDFCytoplasmic male sterility (CMS) observed in many plants leads defect in the production of functional pollen, while the expression of CMS is suppressed by a fertility restorer gene in the nuclear genome. Ogura CMS of radish is induced by a mitochondrial orf138, and a fertility restorer gene, Rfo, encodes a P-type PPR protein, ORF687, acting at the translational level. But, the exact function of ORF687 is still unclear.
View Article and Find Full Text PDFIn addition to Ogura cytoplasmic male sterility (CMS), which is used extensively for F hybrid seed production in Brassicaceae crops, two other CMS systems, NWB CMS and DCGMS, have also been identified. The causal gene for the latter two CMS systems has been identified as a novel chimeric gene, . We previously reported that is specific to black radish cultivars and that it is present in line 'RS-5' of ; however, the sequence in 'RS-5' differed from that of black radish cultivars.
View Article and Find Full Text PDFThe structures of plant mitochondrial genomes are more complex than those of animals. One of the reasons for this is that plant mitochondrial genomes typically have many long and short repeated sequences and intra- and intermolecular recombination may create various DNA molecules in this organelle. Recombination may sometimes create a novel gene that causes cytoplasmic male sterility (CMS).
View Article and Find Full Text PDFBackground: Root and tuber crops are a major food source in tropical Africa. Among these crops are several species in the monocotyledonous genus Dioscorea collectively known as yam, a staple tuber crop that contributes enormously to the subsistence and socio-cultural lives of millions of people, principally in West and Central Africa. Yam cultivation is constrained by several factors, and yam can be considered a neglected "orphan" crop that would benefit from crop improvement efforts.
View Article and Find Full Text PDFBackground: Sequencing analysis of mitochondrial genomes is important for understanding the evolution and genome structures of various plant species. Barley is a self-pollinated diploid plant with seven chromosomes comprising a large haploid genome of 5.1 Gbp.
View Article and Find Full Text PDFCrop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC).
View Article and Find Full Text PDFThe complete mitochondrial genome sequences of Brassica species have provided insight into inter- and intraspecific variation of plant mitochondrial genomes. However, the size of mitochondrial genome sequenced for Brassica oleracea hitherto does not match to its physical mapping data. This fact led us to investigate B.
View Article and Find Full Text PDFIn wheat (Triticum) and Aegilops, chloroplast and mitochondrial genomes have been studied for over three decades to clarify the phylogenetic relationships among species, and most of the maternal lineages of polyploid species have been clarified. Mitochondrial genomes of Emmer (tetraploid with nuclear genome AABB) and Dinkel (hexaploid with AABBDD) wheat are classified into two different types, VIIa and VIIb, by the presence-absence of the third largest HindIII fragment (named H3) in the mitochondrial DNA. Although the mitochondrial genome in the genera often provides useful information to clarify the phylogenetic relationship among closely related species, the phylogenetic significance of this dimorphism has yet not been clarified.
View Article and Find Full Text PDFBackground: Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae.
View Article and Find Full Text PDFProtein phosphorylation by protein tyrosine (Tyr) kinases plays important roles in a variety of signalling pathways in cell growth, differentiation and oncogenesis in animals. Despite the absence of classical Tyr kinases in plants, a similar ratio of phosphotyrosine residues in phosphorylated proteins was found in Arabidopsis thaliana as in human. However, protein kinases responsible for tyrosine phosphorylation in plants except some dedicated dual-specificity kinases still remain unclear.
View Article and Find Full Text PDFPolymorphic analyses of angiosperm mitochondrial DNA are rare in comparison with chloroplast DNA, because few target sequences in angiosperm mitochondrial DNA are known. Minisatellites, a tandem array of repeated sequences with a repeat unit of 10 to ~100 bp, are popular target sequences of animal mitochondria, but Beta vulgaris is the only known angiosperm species for which such an analysis has been conducted. From this lack of information, it was uncertain as to whether polymorphic minisatellites existed in other angiosperm species.
View Article and Find Full Text PDFPlastid engineering technique has been established only in Nicotiana tabacum, and the widespread application is severely limited so far. In order to exploit a method to transfer the genetically transformed plastomes already obtained in tobacco into other plant species, somatic cell fusion was conducted between a plastome transformant of tobacco and a cultivar of petunia (Petunia hybrida). A tobacco strain whose plastids had been transformed with aadA (a streptomycin/spectinomycin adenylyltransferase gene) and mdar [a gene for monodehydroascorbate reductase (MDAR)] and a petunia variety, 'Telstar', were used as cell fusion partners.
View Article and Find Full Text PDFTo reveal the molecular and genetic mechanism of fertility restoration in Ogura male sterility in Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides), we investigated fertility restoration of a plant that lacks the dominant type of orf687, a previously identified fertility restorer gene.
View Article and Find Full Text PDFBackground And Aims: Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited.
View Article and Find Full Text PDFTanpakushitsu Kakusan Koso
November 2005
The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.
View Article and Find Full Text PDFThe application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes.
View Article and Find Full Text PDFAccording to the similarity of the amino acid sequences in their catalytic domains, eukaryotic protein kinases have been classified into the five main groups: 'AGC', 'CaMK', 'CMGC', 'PTK' and 'other'. The AGC group, represented by the cyclic nucleotide-dependent kinases (PKA and PKG), the calcium-phospholipid-dependent kinases (PKC) and the ribosomal S6 protein kinases, are poorly characterized in plants except for a few cases. In this study, in order to gain a better understanding of plant protein kinases in the AGC group, three cDNAs encoding novel protein kinases, RsNdr1 and RsNdr2a/b, were cloned from radish and characterized by molecular and biochemical methods.
View Article and Find Full Text PDFSpecies-specific obligate pollination mutualism between Glochidion trees (Euphorbiaceae) and Epicephala moths (Gracillariidae) involves a large number of interacting species and resembles the classically known fig-fig wasp and yucca-yucca moth associations. To assess the extent of parallel cladogenesis in Glochidion-Epicephala association, we reconstruct phylogenetic relationships of 18 species of Glochidion using nuclear ribosomal DNA sequences (internal and external transcribed spacers) and those of the corresponding 18 Epicephala species using mitochondrial (the cytochrome oxidase subunit I gene) and nuclear DNA sequences (the arginine kinase and elongation factor-1alpha genes). Based on the obtained phylogenies, we determine whether Glochidion and Epicephala have undergone parallel diversification using several different methods for investigating the level of cospeciation between phylogenies.
View Article and Find Full Text PDFConfigurations of mitochondrial coxI and orfB gene regions were analysed by polymerase chain reaction (PCR) in three wild and one cultivated species of Raphanus. A total of 207 individual plants from 60 accessions were used. PCR with five combinations of primers identified five different amplification patterns both in wild and cultivated radishes.
View Article and Find Full Text PDF