Clin Pharmacol Drug Dev
March 2025
Pizuglanstat is a novel hematopoietic prostaglandin D synthase inhibitor and investigational treatment for Duchenne muscular dystrophy. This Phase 1 mass balance study aimed to characterize the absorption, metabolism, and excretion of carbon-14 (C)-labeled pizuglanstat in healthy adults (ClinicalTrials.gov, NCT04825431).
View Article and Find Full Text PDFClin Pharmacol Drug Dev
October 2023
Futibatinib, a selective, irreversible fibroblast growth factor receptor 1-4 inhibitor, is being investigated for tumors harboring FGFR aberrations and was recently approved for the treatment of FGFR2 fusion/rearrangement-positive intrahepatic cholangiocarcinoma. In vitro studies identified cytochrome P450 (CYP) 3A as the major CYP isoform in futibatinib metabolism and indicated that futibatinib is likely a P-glycoprotein (P-gp) substrate and inhibitor. Futibatinib also showed time-dependent inhibition of CYP3A in vitro.
View Article and Find Full Text PDFTAS-114 is a dual deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD) inhibitor expected to widen the therapeutic index of capecitabine. Its maximum tolerated dose (MTD) was determined from a safety perspective in a combination study with capecitabine; however, its inhibitory effects on DPD activity were not assessed in the study. The dose justification to select its MTD as the recommended dose in terms of DPD inhibition has been required, but the autoinduction profile of TAS-114 made it difficult.
View Article and Find Full Text PDFNEDD8-activating enzyme (NAE) is an essential E1 enzyme of the NEDD8 conjugation (neddylation) pathway, which controls cancer cell growth and survival through activation of cullin-RING ubiquitin ligase complexes (CRL). In this study, we describe the preclinical profile of a novel, highly potent, and selective NAE inhibitor, TAS4464. TAS4464 selectively inhibited NAE relative to the other E1s UAE and SAE.
View Article and Find Full Text PDFThe Caco-2 cells co-expressing cytochrome P450 (CYP) 3A4 and NADPH-cytochrome P450 reductase (CPR) were developed using a human artificial chromosome (HAC) vector. The CYP3A4 and CPR genes were cloned into the HAC vector in CHO cells using the Cre-loxP system, and the microcell-mediated chromosome transfer technique was used to transfer the CYP3A4-CPR-HAC vector to Caco-2 cells. After seeding onto semipermeable culture inserts, the CYP3A4-CPR-HAC/Caco-2 cells were found to form tight monolayers, similar to the parental cells, as demonstrated by the high transepithelial electrical resistance (TEER) value and comparable permeability of non-CYP3A4 substrates between parent and CYP3A4-CPR-HAC/Caco-2 cell monolayers.
View Article and Find Full Text PDFA human small intestinal epithelial cell (HIEC) monolayer was recently established in our laboratories as a novel system to evaluate the Papp (apparent permeability coefficient) of compounds during their absorption in humans. An effusion-based analysis using polyethylene glycol oligomers with molecular weights ranging from 194-898 indicated that HIEC and Caco-2 cell monolayers both had paracellular pores with 2 distinct radiuses (∼ 5 and 9-14 Å), whereas the porosity of large pores was 11-fold higher in the HIEC monolayer (44 × 10(-8)) than in the Caco-2 cells (4 × 10(-8)). A comparison between the fraction-absorbed (Fa) values observed in humans and those predicted from Papp values in both monolayers indicated that the HIEC monolayer had markedly higher precision to predict Fa values with root mean square error of 9.
View Article and Find Full Text PDFAdult intestinal stem cells (ISCs) possess both a long-term proliferation ability and differentiation capability into enterocytes. As a novel in vitro system for the evaluation of drug absorption, we characterized a human small intestinal epithelial cell (HIEC) monolayer that differentiated from adult ISCs. Continuous proliferation/differentiation from ISCs consistently conferred the capability of maturation of enterocytes to HIECs over 25 passages.
View Article and Find Full Text PDFVEGF receptor (VEGFR) signaling plays a key role in tumor angiogenesis. Although some VEGFR signal-targeted drugs have been approved for clinical use, their utility is limited by associated toxicities or resistance to such therapy. To overcome these limitations, we developed TAS-115, a novel VEGFR and hepatocyte growth factor receptor (MET)-targeted kinase inhibitor with an improved safety profile.
View Article and Find Full Text PDFCarvedilol, an alpha- and beta-adrenergic blocking drug, is mainly metabolized by CYP2D6, UGT1A1, UGT2B4 and UGT2B7. This drug is administered orally as a racemic mixture of R(+)- and S(-)-enantiomers. It has been reported that CYP2D6 prefers metabolizing S-carvedilol to R-carvedilol stereoselectively.
View Article and Find Full Text PDFIn our previous study it was observed that the frequencies of UGT1A1*6, UGT2B7*3 and CYP2D6*10 in patients who have a low level ability of glucuronidation were significantly higher than those in patients with a high level of ability of glucuronidation. The same tendency was found in the frequency of CYP2D6*5, though there was no significant difference. The purpose of this study was to evaluate the effects of the polymorphism on pharmacokinetics of carvedilol by population pharmacokinetic analysis.
View Article and Find Full Text PDFTo avoid tipping over either during walking or on standing up, humans will first push down hard on the ground with a part of the sole of the foot. Then, when the tipping force can no longer be resisted, a change in body position or an extra step (stepping out) may be required to stabilise the posture. Our biped robot's control system attempts to reproduce and execute the same postural control operations carried out by humans.
View Article and Find Full Text PDFPurpose: It has been reported that carvedilol, which has beta-adrenergic blocking and vasodilating activities, is mainly metabolized by UDP-glucuronosyltransferase (UGT) 1A1, UGT2B4, UGT2B7 and CYP2D6. The aim of this study was to determine whether the activity of glucuronidation has an influence on the area under the curve (AUC) of carvedilol and whether polymorphisms in UGTs and CYP2D6 contribute to individual variation in disposition of carvedilol in Japanese.
Methods: Plasma concentrations of carvedilol and its glucuronide were determined by reversed-phase high-performance liquid chromatography (HPLC).