Three-dimensional cell culture spheroids are commonly used for drug evaluation studies because they can produce large quantities of homogeneous cell aggregates. As the spheroids grow, nutrients supplied from outer spheroid regions render the inner spheroid areas hypoxic and hyponutrient, which makes them unobservable through confocal microscopy. In this study, we fabricated a cancer cell aggregate culture device that facilitates the observation of nutrient and oxygen gradients.
View Article and Find Full Text PDFIn this study, we proposed a droplet-based valveless microfluidic system that has the necessary functions to perform the binding, washing, eluting, and collecting processes of phage-display screening against spheroids, which can be expected to present a similar repertoire and number of membrane proteins as . Although spheroids have much larger sizes than single cells, spheroids are difficult to manipulate through manual operation. The proposed microfluidic system actively controls the position and velocity of droplets using a camera, three air pumps, and three liquid pumps to perform the processes for phage-display screening.
View Article and Find Full Text PDFMicromachines (Basel)
November 2021
Simple microfluidic systems for handling large particles such as three-dimensional (3D) cultured cells, microcapsules, and animalcules have contributed to the advancement of biology. However, obtaining a highly integrated microfluidic device for handling large particles is difficult because there are no suitable microvalves for deep microchannels. Therefore, this study proposes a microvalve with a trapezoid-shaped cross-section to close a deep microchannel.
View Article and Find Full Text PDFThe small number of high-migratory cancer cells in a cell population make studies on high-migratory cancer cells difficult. For the development of migration assays for such cancer cells, several microfluidic devices have been developed. However, they measure migration that is influenced by microstructures and they collect not only high-migratory cells, but also surrounding cells.
View Article and Find Full Text PDFThis paper proposes a microfluidic device for screening molecules such as aptamers, antibodies, proteins, etc. for target cell-specific binding molecules. The discovery of cancer cell-specific binding molecules was the goal of this study.
View Article and Find Full Text PDFMicromachines (Basel)
December 2016
We used inclined lithography to fabricate a pneumatic microvalve for tall microchannels such as those used to convey large cells. The pneumatic microvalve consists of three layers. The upper layer is the actual liquid microchannel, which has a parallelogram-shaped cross section of width 500 μm, height 100 μm, and an acute angle of 53.
View Article and Find Full Text PDFA microfluidic device capable of precise chemical control is helpful to mimic tumor microenvironments in vitro, which are closely associated with malignant progression, including metastasis. Cancer cells under a concentration gradient of oxygen and other sustenance materials inside a tumor in vivo have recently been reported to increase the probability of metastasis. The influence of glucose concentration on cancer cells has not been measured well, whereas that of oxygen concentration has been thoroughly examined using microfluidic devices.
View Article and Find Full Text PDF