Publications by authors named "Toru Hirahara"

We demonstrate the impact of high-density calcium introduction into Ca-intercalated bilayer graphene on a SiC substrate, wherein a metallic layer of Ca has been identified at the interface. We have discerned that the additional Ca layer engenders a free-electron-like band, which subsequently hybridizes with a Dirac band, leading to the emergence of a van Hove singularity. Coinciding with this, there is an increase in the critical temperature for superconductivity.

View Article and Find Full Text PDF

Ca-intercalation has enabled superconductivity in graphene on SiC. However, the atomic and electronic structures that are critical for superconductivity are still under discussion. We find an essential role of the interface between monolayer graphene and the SiC substrate for superconductivity.

View Article and Find Full Text PDF

A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space and can be a carrier for information processing by manipulating it in tailored structures. Here, a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(BiSb)Te (MnBST), separated by quintuple layers of TI, (BiSb)Te (BST), is fabricated and skyrmions are observed through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation.

View Article and Find Full Text PDF

In electrochemical devices, it is important to control the ionic transport between the electrodes and solid electrolytes. However, it is difficult to tune the transport without applying an electric field. This paper presents a method to modulate the transport via tuning of the electrochemical potential difference by controlling the electronic states at the interfaces.

View Article and Find Full Text PDF

We investigated the superconducting transport properties of the one-unit-cell FeSe ultrathin films epitaxially grown on undoped SrTiO_{3}(001) (STO) with a well-defined surface structure by in situ independently-driven four-point-probe measurements. Our results unambiguously revealed the detection of the two-dimensional electrical conduction of the films without parallel conduction through the underlying substrate, both in the normal and superconducting states. The monolayer film exhibited a superconducting transition at an onset temperature of 40 K.

View Article and Find Full Text PDF

Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures.

View Article and Find Full Text PDF

We performed in situ magnetotransport measurements on ultrathin Bi(111) films [4-30 bilayers (BLs), 16-120 Å thick] to elucidate the role of bulk or surface states in the transport phenomena. We found that the temperature dependence of the film conductivity shows no thickness dependence for the 6-16 BL films and is affected by the electron-electron scattering, suggesting surface-state dominant contribution. In contrast, the weak antilocalization effect observed by applying a magnetic field shows clear thickness dependence, indicating bulk transport.

View Article and Find Full Text PDF

A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.

View Article and Find Full Text PDF

In situ micro-four-point-probe conductivity measurements in ultrahigh vacuum revealed that the Si(111)-striped incommensurate-Pb surface showed the superconductivity transition at 1.1 K. Both of the hexagonal and rectangular phases of Si(111)√[7]×√[3]-In surface showed superconductivity at 2.

View Article and Find Full Text PDF

We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface.

View Article and Find Full Text PDF

The electronic structure of ultrathin Ag(111) films covered with a square root(3) x square root(3)-Bi/Ag ordered alloy was investigated by means of spin- and angle-resolved photoemission spectroscopy. Surface-state (SS) bands, spin split by the Rashba interaction, selectively couple to the quantum-well state (QWS) bands, originally spin degenerate, in the metal film. Gaps are found to open between QWS and SS with parallel spins, while free-electron-like QWS dispersions are observed for antiparallel spin configurations.

View Article and Find Full Text PDF

The electronic structure of Ag(111) quantum well films covered with a (sqrt[3]xsqrt[3]) R30 degrees Bi/Ag surface ordered alloy, which shows a Rashba spin-split surface state, is investigated with angle-resolved photoemission spectroscopy. The band dispersion of the spin-split surface state is significantly modified by the interaction with the quantum well states of Ag films. The interaction is well described by the band hybridization model, which concludes the spin polarization of the quantum well states.

View Article and Find Full Text PDF

Temperature-dependent electron transport in a metallic surface superstructure, Si(111)sqrt[3] x sqrt[3]-Ag, was studied by a micro-four-point probe method and photoemission spectroscopy. The surface-state conductivity exhibits a sharp transition from metallic conduction to strong localization at approximately 150 K. The metallic regime is due to electron-phonon interaction while the localization seemingly originates from coherency of electron waves.

View Article and Find Full Text PDF

We report the energy dispersions of the highest occupied molecular orbitals (HOMO)-derived bands of a pentacene (Pn) thin film, whose in-plane structure resembles closely that of the ab plane of a low-density bulk Pn phase. Our present photoemission result indicates that the overlap of the pi-orbitals of adjacent Pn molecules is larger than what was expected from theoretical calculations. Further, of the two HOMO-derived bands, the large dispersion width of the band with higher binding energy suggests that this one mainly contributes to the bandlike charge transport in a Pn crystal.

View Article and Find Full Text PDF

The in-plane energy dispersion of quantized states in an ultrathin Ag film formed on the one-dimensional (1D) surface superstructure Si(111)-(4 x 1)-In shows clear 1D anisotropy instead of the isotropic two-dimensional free-electron-like behavior expected for an isolated metal film. The present photoemission results demonstrate that an atomic layer at the film-substrate interface can regulate the dimensionality of electron motion in quantum films.

View Article and Find Full Text PDF

We have succeeded in measuring the resistance across a single atomic step through a monatomic-layer metal on a crystal surface, Si(111)(sqrt[3]xsqrt[3])-Ag, using three independent methods, which yielded consistent values of the resistance. Two of the methods were direct measurements with monolithic microscopic four-point probes and four-tip scanning tunneling microscope probes. The third method was the analysis of electron standing waves near step edges, combined with the Landauer formula for 2D conductors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0l0d39k1i5014ehvre2c80r12odna9rj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once