Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development, and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations that arise from a neuronal migration failure through the developing cortex. By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology.
View Article and Find Full Text PDFStress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these membraneless organelles is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs form SGs following stress-induced translational arrest.
View Article and Find Full Text PDFTo standardize comparison of fluorescent proteins and independently determine which monomeric StayGold variant is best for live microscopy, we analyzed fluorescent protein tagged I3-01 peptides that self-assemble into stable sixty subunit dodecahedrons inside live cells. We find mStayGold is 3-fold brighter and 3-fold more photostable compared with EGFP and superior to other monomeric variants in mammalian cytoplasm. In addition, analysis of intracellular nanocage diffusion confirms the monomeric nature of mStayGold.
View Article and Find Full Text PDFDoublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity.
View Article and Find Full Text PDFStress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these condensates is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs condense into SGs following stress-induced translational arrest.
View Article and Find Full Text PDFA challenge in analyzing dynamic intracellular cell biological processes is the dearth of methodologies that are sufficiently fast and specific to perturb intracellular protein activities. We previously developed a light-sensitive variant of the microtubule plus end-tracking protein EB1 by inserting a blue light-controlled protein dimerization module between functional domains. Here, we describe an advanced method to replace endogenous EB1 with this light-sensitive variant in a single genome editing step, thereby enabling this approach in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neurons.
View Article and Find Full Text PDFMicropatterning of extracellular matrix proteins enables defining cell position and shape in experiments investigating intracellular dynamics and organization. While such standardization is advantageous in automated and quantitative analysis of many cells, the original methods generating such patterns are cumbersome and inflexible. However, recent development of contact-less methods that allow photochemical generation of protein patterns robustly and rapidly is boosting the broader availability of micropatterning approaches.
View Article and Find Full Text PDFMissense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD); however, pathways regulating LRRK2 subcellular localization, function, and turnover are not fully defined. We performed quantitative mass spectrometry-based interactome studies to identify 48 novel LRRK2 interactors, including the microtubule-associated E3 ubiquitin ligase TRIM1 (tripartite motif family 1). TRIM1 recruits LRRK2 to the microtubule cytoskeleton for ubiquitination and proteasomal degradation by binding LRRK2911-919, a nine amino acid segment within a flexible interdomain region (LRRK2853-981), which we designate the "regulatory loop" (RL).
View Article and Find Full Text PDFChromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex. In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.
View Article and Find Full Text PDFMany lysosome functions are determined by a lumenal pH of ∼5.0, including the activity of resident acid-activated hydrolases. Lysosome pH (pHlys) is often increased in neurodegenerative disorders and predicted to be decreased in cancers, making it a potential target for therapeutics to limit the progression of these diseases.
View Article and Find Full Text PDFAberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice.
View Article and Find Full Text PDFCurr Opin Cell Biol
October 2020
Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest.
View Article and Find Full Text PDFLight can be controlled with high spatial and temporal accuracy. Therefore, optogenetics is an attractive experimental approach to modulate intracellular cytoskeleton dynamics at much faster timescales than by genetic modification. For example, in mammalian cells, microtubules (MTs) grow tens of micrometers per minute and many intracellular MT functions are mediated by a complex of +TIP proteins that dynamically associate with growing MT plus ends.
View Article and Find Full Text PDFTau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface.
View Article and Find Full Text PDFMicrotubules form a highly dynamic filament network in all eukaryotic cells. Individual microtubules grow by tubulin dimer subunit addition and frequently switch between phases of growth and shortening. These unique dynamics are powered by GTP hydrolysis and drive microtubule network remodeling, which is central to eukaryotic cell biology and morphogenesis.
View Article and Find Full Text PDFEnd-binding proteins (EBs) are adaptors that recruit functionally diverse microtubule plus-end-tracking proteins (+TIPs) to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue-light-sensitive protein-protein interaction module between the microtubule-binding and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light.
View Article and Find Full Text PDFDespite abundant knowledge of the regulation and biochemistry of glycolytic enzymes, we have limited understanding on how they are spatially organized in the cell. Emerging evidence indicates that nonglycolytic metabolic enzymes regulating diverse pathways can assemble into polymers. We now show tetramer- and substrate-dependent filament assembly by phosphofructokinase-1 (PFK1), which is considered the "gatekeeper" of glycolysis because it catalyzes the step committing glucose to breakdown.
View Article and Find Full Text PDFError-free chromosome segregation requires dynamic control of microtubule attachment to kinetochores, but how kinetochore-microtubule interactions are spatially and temporally controlled during mitosis remains incompletely understood. In addition to the NDC80 microtubule-binding complex, other proteins with demonstrated microtubule-binding activities localize to kinetochores. One such protein is the cytoplasmic linker-associated protein 2 (CLASP2).
View Article and Find Full Text PDFAutophagy, a pathway for lysosomal-mediated cellular degradation, has recently been described as a regulator of cell migration. Although the molecular mechanisms underlying autophagy-dependent motility are only beginning to emerge, new work demonstrates that selective autophagy mediated by the autophagy cargo receptor, NBR1, specifically promotes the dynamic turnover of integrin-based focal adhesion sites during motility. Here, we discuss the detailed mechanisms through which NBR1-dependent selective autophagy supports focal adhesion remodeling, and we describe the interconnections between this pathway and other established regulators of focal adhesion turnover, such as microtubules.
View Article and Find Full Text PDFAutophagy is a catabolic pathway involving the sequestration of cellular contents into a double-membrane vesicle, the autophagosome. Although recent studies have demonstrated that autophagy supports cell migration, the underlying mechanisms remain unknown. Using live-cell imaging, we uncover that autophagy promotes optimal migratory rate and facilitates the dynamic assembly and disassembly of cell-matrix focal adhesions (FAs), which is essential for efficient motility.
View Article and Find Full Text PDFThe proper positioning of organs during development is essential, yet little is known about the regulation of this process in mammals. Using murine tooth development as a model, we have found that cell migration plays a central role in positioning of the organ primordium. By combining lineage tracing, genetic cell ablation, and confocal live imaging, we identified a migratory population of Fgf8-expressing epithelial cells in the embryonic mandible.
View Article and Find Full Text PDFCRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency.
View Article and Find Full Text PDFThe postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2.
View Article and Find Full Text PDF