Biological drugs intended for multi-dose application require the presence of antimicrobial preservatives to avoid microbial growth. As the presence of certain preservatives has been reported to increase protein and peptide particle formation, it is essential to choose a preservative compatible with the active pharmaceutical ingredient in addition to its preservation function. Thus, this review describes the current status of the use of antimicrobial preservatives in biologic formulations considering (i) appropriate preservatives for protein and peptide formulations, (ii) their physico-chemical properties, (iii) their in-/compatibilities with other excipients or packaging material, and (iv) their interactions with the biological compound.
View Article and Find Full Text PDFThe present study investigated the photodegradation of three different monoclonal antibodies (mAb) by visible light. Several chromatographic techniques, such as size-exclusion and hydrophobic interaction chromatography as well as mass spectrometry were used to measure relative changes of various oxidation related monoclonal antibody species. The results show that visible light is indeed capable of inducing the formation of protein photo-oxidation products, such as acidic, basic, hydrophilic, and several other protein species with altered physicochemical properties.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2020
Polysorbates are widely used as non-ionic surfactant in biopharmaceutical formulations. Recently, the degradation of polysorbate moved into the focus of attention, because in several published studies it was described, that stability issues in polysorbate containing formulations were observed leading to the formation and appearance of sub-visible and visible particles. For this reason, monitoring of polysorbate and its degradation products is of importance throughout the development of parenterals.
View Article and Find Full Text PDFA novel protein-coated microcrystal (PCMC) technology offers the possibility to produce dry protein formulations suitable for inhalation or, after reconstitution, for injection. Micron-sized particles are hereby produced by co-precipitation via a rapid dehydration method. Thus, therapeutic proteins can be stabilised and immobilised on crystalline carrier surfaces.
View Article and Find Full Text PDFThe purpose of the presented study is to understand the physicochemical properties of proteins in aqueous solutions in order to identify solution conditions with reduced attractive protein-protein interactions, to avoid the formation of protein aggregates and to increase protein solubility. This is assessed by measuring the osmotic second virial coefficient (B(22)), a parameter of solution non-ideality, which is obtained using self-interaction chromatography. The model protein is lysozyme.
View Article and Find Full Text PDF