High-throughput genotyping of large numbers of lines remains a key challenge in plant genetics, requiring geneticists and breeders to find a balance between data quality and the number of genotyped lines under a variety of different existing genotyping technologies when resources are limited. In this work, we are proposing a new imputation pipeline ("HBimpute") that can be used to generate high-quality genomic data from low read-depth whole-genome-sequence data. The key idea of the pipeline is the use of haplotype blocks from the software HaploBlocker to identify locally similar lines and subsequently use the reads of all locally similar lines in the variant calling for a specific line.
View Article and Find Full Text PDFImputation is one of the key steps in the preprocessing and quality control protocol of any genetic study. Most imputation algorithms were originally developed for the use in human genetics and thus are optimized for a high level of genetic diversity. Different versions of BEAGLE were evaluated on genetic datasets of doubled haploids of two European maize landraces, a commercial breeding line and a diversity panel in chicken, respectively, with different levels of genetic diversity and structure which can be taken into account in BEAGLE by parameter tuning.
View Article and Find Full Text PDFThe concept of haplotype blocks has been shown to be useful in genetics. Fields of application range from the detection of regions under positive selection to statistical methods that make use of dimension reduction. We propose a novel approach ("HaploBlocker") for defining and inferring haplotype blocks that focuses on linkage instead of the commonly used population-wide measures of linkage disequilibrium.
View Article and Find Full Text PDF