Study Question: Does FSH induce free radical generation with substantial oxidative damage in human cumulus granulosa cells (cGCs) and mural granulosa cells (mGCs)?
Summary Answer: FSH of both physiological and supraphysiological concentrations induced free radical generation on subcellular levels, most notably in the mitochondria, while the elevated free radical load caused neglectable oxidative damage in both cGCs and mGCs.
What Is Known Already: FSH is fundamental for regulation of granulosa cell (GC) function and oocyte maturation, during which a physiological level of reactive oxygen species (ROS) is essential, while excessive amounts lead to oxidative damage. Potential adverse effects of high FSH doses on GCs may be mediated by ROS.
An increasing amount of evidence suggests that immune responses may affect trophoblast functioning, which in turn may play a role in gestational disorders and fetal development. This systematic review offers the first summary of in vitro studies on the trophoblast response to immunological triggers, in conjunction with a risk of bias analysis. A search in Pubmed and Embase yielded 110 relevant studies.
View Article and Find Full Text PDFPlasticity-related gene (PRG) 5 is a vertebrate specific membrane protein, that belongs to the family of lipid-phosphate phosphatases (LPPs). It is prominently expressed in neurons and is involved in cellular processes such as growth-cone guidance and spine formation. At a functional level, PRG5 induces filopodia in non-neuronal cell lines, as well as the formation of plasma membrane protrusions in primary cortical and hippocampal neurons.
View Article and Find Full Text PDFThe first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders.
View Article and Find Full Text PDFBackground: The plasma metabolome reflects the physiological state of various biological processes and can serve as a proxy for disease risk. Plasma metabolite variation, influenced by genetic and epigenetic mechanisms, can also affect the cellular microenvironment and blood cell epigenetics. The interplay between the plasma metabolome and the blood cell epigenome remains elusive.
View Article and Find Full Text PDFAdverse intrauterine conditions may cause fetal growth restriction (FGR), a pregnancy complication frequently linked to perinatal morbidity and mortality. Although many studies have focused on FGR, the pathophysiological processes underlying this disorder are complex and incompletely understood. We have recently determined that galectin-3 (gal-3), a β-galactoside-binding protein, regulates pregnancy-associated processes, including uterine receptibility, maternal vascular adaptation and placentation.
View Article and Find Full Text PDFMaternal obesity is a well-known risk factor for developing premature obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes in the progeny. The development of white adipose tissue is a dynamic process that starts during prenatal life: fat depots laid down in utero are associated with the proportion of fat in children later on. How early this programming takes place is still unknown.
View Article and Find Full Text PDFAbout 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood.
View Article and Find Full Text PDFBackground: Stress exposure during Neonatal Intensive Care Unit (NICU) stay may have long-lasting effects on neurodevelopmental outcomes in extremely preterm infants. Altered DNA methylation of stress-related and neurodevelopmentally relevant genes may be an underlying mechanism.
Aims: This exploratory study aimed to investigate the association between neonatal stress exposure and DNA methylation in these genes at two different time points: early during the NICU stay (7-14 days after birth) and later, at discharge from the NICU.
Introduction: Germinal Matrix-Intraventricular Haemorrhage (GM-IVH) is one of the most common neurological complications in preterm infants, which can lead to accumulation of cerebrospinal fluid (CSF) and is a major cause of severe neurodevelopmental impairment in preterm infants. However, the pathophysiological mechanisms triggered by GM-IVH are poorly understood. Analyzing the CSF that accumulates following IVH may allow the molecular signaling and intracellular communication that contributes to pathogenesis to be elucidated.
View Article and Find Full Text PDFCumulus granulosa cells (cGCs) and mural granulosa cells (mGCs), although derived from the same precursors, are anatomically and functionally heterogeneous. They are critical for female fertility by supporting oocyte competence and follicular development. There are various techniques used to investigate the role of free radicals in mGCs and cCGs.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in preterm infants. Epigenetic changes in DNA methylation may be present prior to NEC onset. 24 preterm infants with NEC and 45 matched controls were included.
View Article and Find Full Text PDFBackground: In preterm infants, intestinal hypoxia may partly contribute to the pathophysiology of necrotizing enterocolitis through changes in gene expression. Splanchnic hypoxia can be detected with monitoring of regional splanchnic oxygen saturation (rSO). Using a piglet model of asphyxia, we aimed to correlate changes in rSO to gene expression.
View Article and Find Full Text PDFBackground: Dystonia is a rare movement disorder, in which patients suffer from involuntary twisting movements or abnormal posturing. Next to these motor symptoms, patients have a high prevalence of psychiatric comorbidity, suggesting a role for serotonin in its pathophysiology. This study investigates the percentage of DNA methylation of the gene encoding for the serotonin reuptake transporter (SLC6A4) in dystonia patients and the associations between methylation levels and presence and severity of psychiatric symptoms.
View Article and Find Full Text PDFOxid Med Cell Longev
December 2022
Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging.
View Article and Find Full Text PDFBackground: Pre-diabetes precedes Diabetes Mellitus (DM) disease and is a critical period for hyperglycemia treatment, especially for menopausal women, considering all metabolic alterations due to hormonal changes. Recently, the literature has demonstrated the role of physical exercise in epigenetic reprogramming to modulate the gene expression patterns of metabolic conditions, such as hyperglycemia, and prevent DM development. In the present study, we hypothesized that physical exercise training could modify the epigenetic patterns of women with poor glycemic control.
View Article and Find Full Text PDFIncreasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood.
View Article and Find Full Text PDFExposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.
View Article and Find Full Text PDFBackground: Understanding underlying mechanisms of neurodevelopmental impairment following preterm birth may enhance opportunities for targeted interventions. We aimed to assess whether placental DNA methylation of selected genes affected early neurological functioning in preterm infants.
Methods: We included 43 infants, with gestational age <30 weeks and/or birth weight <1,000 g and placental samples at birth.