Controlling the formation and stoichiometric content of the desired phases of materials has become of central interest for a variety of fields. The possibility of accessing metastable states by initiating reactions by X-ray-triggered mechanisms over ultrashort time scales has been enabled by the development of X-ray free electron lasers (XFELs). Utilizing the exceptionally high-brilliance X-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with nonstoichiometric changes in hydrogen content as probed at a repetition rate of 4.
View Article and Find Full Text PDFAn experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤10 s), where up to 352 diffraction images can be collected from a single pulse train.
View Article and Find Full Text PDFX-ray photon correlation spectroscopy (XPCS) is a routine technique to study slow dynamics in complex systems at storage-ring sources. Achieving nanosecond time resolution with the conventional XPCS technique is, however, still an experimentally challenging task requiring fast detectors and sufficient photon flux. Here, the result of a nanosecond XPCS study of fast colloidal dynamics is shown by employing an adaptive gain integrating pixel detector (AGIPD) operated at frame rates of the intrinsic pulse structure of the storage ring.
View Article and Find Full Text PDFThe new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.
View Article and Find Full Text PDF