Background: Molecular chaperones assist protein folding, facilitate degradation of misfolded polypeptides, and thereby maintain protein homeostasis. Impaired chaperone activity leads to defective protein quality control that is implicated in multiple skeletal muscle diseases. The heat shock protein A4 (HSPA4) acts as a co-chaperone for HSP70.
View Article and Find Full Text PDFThe evolution of microbial and viral organisms often generates clonal interference, a mode of competition between genetic clades within a population. Here we show how interference impacts systems biology by constraining genetic and phenotypic complexity. Our analysis uses biophysically grounded evolutionary models for molecular phenotypes, such as fold stability and enzymatic activity of genes.
View Article and Find Full Text PDFGene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2013
Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
April 2014
Heat shock proteins HSPA4L and HSPA4 are closely related members of the HSP110 family and act as cochaperones. We generated Hspa4l(-/-)Hspa4(-/-) mice to investigate a functional complementarity between HSPA4L and HSPA4 during embryonic development. Hspa4l(-/-)Hspa4(-/-) embryos exhibited marked pulmonary hypoplasia and neonatal death.
View Article and Find Full Text PDFHistone acetylation has been implicated with the pathogenesis of neuropsychiatric disorders and targeting histone deacetylases (HDACs) using HDAC inhibitors was shown to be neuroprotective and to initiate neuroregenerative processes. However, little is known about the role of individual HDAC proteins during the pathogenesis of brain diseases. HDAC1 was found to be upregulated in patients suffering from neuropsychiatric diseases.
View Article and Find Full Text PDFHeat-shock protein 110 (HSP110) family members act as nucleotide exchange factors (NEF) of mammalian and yeast HSP70 chaperones during the ATP hydrolysis cycle. In this study, we describe the expression pattern of murine HSPA4, a member of the HSP110 family, during testis development and the consequence of HSPA4 deficiency on male fertility. HSPA4 is ubiquitously expressed in all the examined tissues.
View Article and Find Full Text PDFFAF1 was initially isolated as a Fas-associated factor and was subsequently found to interact with a subset of additional proteins that are involved in many cellular events including Fas-mediated apoptosis, heat shock signalling pathways and ubiquitin-dependent processes. Here, we describe that the 74-kDa FAF1 is ubiquitously expressed, while the expression of its post-translational-processed 49-kDa isoform is restricted to post-meiotic male germ cells. In ovary, FAF1 protein is localized predominantly in the cytoplasm of oocytes in all follicle stages.
View Article and Find Full Text PDFThe Hspa4l gene, also known as Apg1 or Osp94, belongs to the HSP110 heat shock gene family, which includes three genes encoding highly conserved proteins. This study shows that Hspa4l is expressed ubiquitously and predominantly in the testis. The protein is highly expressed in spermatogenic cells, from late pachytene spermatocytes to postmeiotic spermatids.
View Article and Find Full Text PDF