J Phys Condens Matter
January 2021
Electronic structure and transport characteristics of coupled CdS and ZnSe quantum dots are studied using density functional theory and non equilibrium Greens function method respectively. Our investigations show that in these novel coupled dots, the Frontier occupied and unoccupied molecular orbitals are spatially located in two different parts, thereby indicating the possibility of asymmetry in electronic transport. We have calculated electronic transport through the coupled quantum dot by varying the coupling strength between the individual quantum dots in the limits of weak and strong coupling.
View Article and Find Full Text PDFWe present an interpretation of Fermi-orbital descriptors (FODs) and argue that these descriptors carry chemical bonding information. We show that a bond order derived from these FODs agrees well with reference values, and highlight that optimized FOD positions used within the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) method correspond to expectations from Linnett's double-quartet theory, which is an extension of Lewis theory. This observation is independent of the underlying exchange-correlation functional, which is shown using the local spin density approximation, the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA), and the strongly constrained and appropriately normed meta-GGA.
View Article and Find Full Text PDFWe investigate the energetics and magnetic signatures of the parent molecular magnet Mn -Acetate [Mn O (COOR) (H O) ] and a chemically decomposed version of this structure, in which the four water molecules are converted to hydroxyl groups and hydrogen molecules. We determine electron addition and water decomposition energetics for this water-containing molecule using density-functional methods and include the recent Fermi-Löwdin-Orbital self-interaction correction. We find that it only costs 0.
View Article and Find Full Text PDFSemilocal approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semilocal approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems.
View Article and Find Full Text PDFWe derived, implemented, and thoroughly tested the complete analytic expression for atomic forces, consisting of the Hellmann-Feynman term and the Pulay correction, for the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) method. Analytic forces are shown to be numerically accurate through an extensive comparison to forces obtained from finite differences. Using the analytic forces, equilibrium structures for a small set of molecules were obtained.
View Article and Find Full Text PDFThe Fermi-Löwdin orbital self-interaction correction (FLO-SIC) methodology is applied to atoms and molecules from the standard G2-1 test set. For the first time FLO-SIC results for the GGA-type PBE functional are presented. In addition, examples where FLO-SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for , the step-wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities.
View Article and Find Full Text PDFIn the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs.
View Article and Find Full Text PDFBeilstein J Nanotechnol
October 2017
The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine-manganese phthalocyanine (FCoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green's function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT.
View Article and Find Full Text PDFFermi-Löwdin orbital self-interaction corrected density functional theory (FLO-SIC DFT) is applied to CH, NO, O, and CH. In general our results indicate that FLO-SIC does favor symmetric setups for molecules with nontrivial chemical bonding. Further we discuss two types of possible symmetry breaking.
View Article and Find Full Text PDFManganese phthalocyanine (MnPc) is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity.
View Article and Find Full Text PDFPharmaceuticals contribute greatly to human and animal health. Given their specific biological targets, pharmaceuticals pose a significant environmental risk by affecting organisms and ecosystem processes, including leaf-litter decomposition. Although litter decomposition is a central process in forest streams, the consequences of exposure to pharmaceuticals remain poorly known.
View Article and Find Full Text PDFBull Environ Contam Toxicol
February 2016
Due to the high use of antibiotics and antiparasitics for the treatment of livestock, there is concern about the potential impacts of the release of these compounds into freshwater ecosystems. In this context, the present study quantified the acute toxicity of two antibiotics (sulfadiazine and sulfadimidine), and three antiparasitic agents (flubendazole, fenbendazole, ivermectin) for nine freshwater invertebrate species. These experiments revealed a low degree of toxicity for the sulfonamide antibiotics, with limited implications in the survival of all test species at the highest test concentrations (50 and 100 mg/L).
View Article and Find Full Text PDFThe diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2) was treated with an excess of RNH2 in MeOH to cause the exclusive formation of the respective o-phenylenebis(N(R)-oxamides) (opboH4R2, R = Me , Et , (n)Pr ) in good yields. Treatment of with half an equivalent of [Cu2(AcO)4(H2O)2] or one equivalent of [Ni(AcO)2(H2O)4] followed by the addition of four equivalents of [(n)Bu4N]OH resulted in the formation of mononuclear bis(oxamidato) type complexes [(n)Bu4N]2[M(opboR2)] (M = Ni, R = Me , Et , (n)Pr ; M = Cu, R = Me , Et , (n)Pr ). By addition of two equivalents of [Cu(pmdta)(NO3)2] to MeCN solutions of , novel trinuclear complexes [Cu3(opboR2)(L)2](NO3)2 (L = pmdta, R = Me , Et , (n)Pr ) could be obtained.
View Article and Find Full Text PDFWe show that the recently synthesized charge-transfer material picene-F₄TCNQ can be used as a gate-voltage controlled molecular switch. The picene-F₄TCNQ system is compared with the extensively characterized anthraquinone-based molecular system, which is known to exhibit large switching ratios due to quantum interference effects. In the case of picene-F₄TCNQ we find switching ratios larger by one order of magnitude.
View Article and Find Full Text PDFThe optical constants together with the magneto-optical Voigt constants of several phthalocyanine (Pc) and methoxy functionalized tetraphenylporphyrin (TMPP) thin films prepared on silicon substrates are presented. The materials investigated are MePc with Me = Fe, Co, Ni, Cu, Zn and MeTMPP with Me = Cu, Ni. We also compared our results to the metal-free H2Pc, H2TPP and H2TMPP.
View Article and Find Full Text PDFWe have prepared mixed phthalocyanine films out of MnPc and F(16)CoPc, which were characterized by means of photoemission spectroscopy and electron energy-loss spectroscopy. Our data reveal the formation of MnPc/F(16)CoPc charge transfer dimers in analogy to the related heterojunction. The electronic excitation spectrum of these blends is characterized by a new low energy excitation at 0.
View Article and Find Full Text PDFThe dinickel(II) complex [Ni2L(ClO4)]ClO4 (1), where L(2-) represents a 24-membered macrocyclic hexaamine-dithiophenolate ligand, reacts with [nBu4N]H2PO2 to form the hypophosphito-bridged complex [Ni2L(μ-O2PH2)](+), which can be isolated as an air-stable perchlorate [Ni2L(μ-O2PH2)]ClO4 (2) or tetraphenylborate [Ni2L(μ-O2PH2)]BPh4 (3) salt. 3·MeCN crystallizes in the triclinic space group P1̅. The bisoctahedral [Ni2L(μ-O2PH2)](+) cation has a N3Ni(μ1,3-O2PH2)(μ-S)2NiN3 core structure with the hypophosphito ligand attached to the two Ni(II) ions in a μ1,3-bridging mode.
View Article and Find Full Text PDFThe synthesis of the novel macrocyclic octadentate amino-thiophenolate ligand H(2)L2 (3,7,11,19,23,27-hexaaza-33,34-dithiol-15,31-di(tert-butyl)-tricyclo[27,3,1(13.17)]-tetratriaconta-1(32),13,15,17(34),29,30-hexane) and its ability to support binuclear nickel(II) complexes with dithiolato-bridged square-pyramidal Ni(II) ions are reported. H(2)L2 is obtained as the hexahydrobromide salt from a Schiff-base condensation reaction between 1,2-bis(4-tert-butyl-2,6-diformylphenylthio)ethane and bis(3-aminopropyl)amine followed by two successive reductions with NaBH(4) and Na/NH(3).
View Article and Find Full Text PDFTreatment of the diethyl ester of o-phenylenebis(oxamic acid) (opbaH(2)Et(2), 1) with 5/6 equivalent of MeNH(2) in abs. EtOH results in the exclusive formation of the ethyl ester of o-phenylene(N′-methyl oxamide)(oxamic acid) (opooH(3)EtMe, 2) in ca. 50% yield.
View Article and Find Full Text PDFUsing photoelectron spectroscopy we demonstrate charge transfer at an interface between two well-known transition metal phthalocyanines, MnPc and F16CoPc, resulting in charged MnPc(δ+) and F16CoPc(δ-) species. Moreover, the transferred charge is substantially confined to the two transition metal centers. Density functional theory calculations reveal that a hybrid state is formed between the two types of phthalocyanines, which causes this charge transfer.
View Article and Find Full Text PDFThe electronic properties of p-type, n-type, and ambipolar spiro materials have been investigated using a combination of photoemission spectroscopy, electron energy-loss spectroscopy, and density functional based calculations. Our results provide insight into the occupied density of states as well as the electronic excitation spectra. Comparison of experimental and theoretical data allows the identification of the orbitals responsible for charge transport and optical properties.
View Article and Find Full Text PDFTo elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or (ii) genes with high CpG density and DNA methylation in the gene body. We observed that a combination of low CpG density in gene bodies together with H3K9me3 and H3K36me3 occupancy is a specific epigenetic feature of zinc finger (ZNF) genes, which comprise 90% of all genes carrying both histone marks on chromosome 19.
View Article and Find Full Text PDFIntegr Environ Assess Manag
April 2010
Under the European Union (EU) Biocidal Products Directive 98/8/EC, comprehensive evaluations on substances of the Third Priority List were conducted until 31 July 2007. This list includes, among other categories, disinfectants for human hygiene (e.g.
View Article and Find Full Text PDFEpigenetic changes are strongly associated with cancer development. DNA hypermethylation is associated with gene silencing and is often observed in CpG islands. Recently, it was suggested that aberrant CpG island methylation in tumors is directed by Polycomb (PcG) proteins.
View Article and Find Full Text PDF