Publications by authors named "Torsten Falk"

Sub-anesthetic ketamine has been demonstrated to reduce abnormal involuntary movements (AIMs) in preclinical models of L-DOPA-induced dyskinesia (LID) and retrospective Parkinson's disease (PD) case reports. In this study, we examined the effects on LID of two different statins alone and in combination with ketamine in unilateral 6-hydroxydopamine-lesioned male rats, the standard model for preclinical LID studies. Ketamine attenuated the development of AIMs, while the non-polar lovastatin only showed anti-dyskinetic activity early in the priming period but did not prevent the development of LID, and the polar pravastatin showed no anti-dyskinetic activity.

View Article and Find Full Text PDF

Sub-anesthetic ketamine has been demonstrated to reduce abnormal involuntary movements (AIMs) in preclinical models of L-DOPA-induced dyskinesia (LID) and retrospective Parkinson's disease case reports. In this study, we examined the effects on L-DOPA-induced dyskinesia of two statins alone and in combination with ketamine in unilateral 6-hydroxydopamine-lesioned male rats, the standard preclinical LID model. Sub-anesthetic ketamine attenuated the development of AIMs, while lovastatin only showed anti-dyskinetic activity at the beginning of the priming but did not prevent the development of LID.

View Article and Find Full Text PDF

Gamma band and single-unit neural activity in primary motor cortex (M1) are involved in the control of movement. This activity is disrupted in Parkinson's disease (PD) and levodopa-induced dyskinesia (LID), a debilitating consequence of dopamine replacement therapy for PD. Physiological features of LID include pathological narrowband gamma oscillations, finely tuned gamma (FTG), and altered M1 firing activity.

View Article and Find Full Text PDF
Article Synopsis
  • Opioids, particularly those targeting the mu opioid receptor (MOR), are effective for severe pain but have serious side effects that limit their use.
  • Researchers developed cyclic glycopeptide endomorphin (glycoEM) analogs that provided pain relief similar to morphine while reducing side effects, including lower abuse potential.
  • In studies with male and female mice, two glycoEM analogs exhibited higher potency and longer-lasting pain relief at much lower doses than morphine, suggesting potential for future clinical applications.
View Article and Find Full Text PDF

Cognitive decline in Parkinson's Disease (PD) is a prevalent and undertreated aspect of disease. Currently, no therapeutics adequately improve this aspect of disease. It has been previously shown that MAS receptor agonism via the glycosylated Angiotensin (1-7) peptide, PNA5, effectively reduces cognitive decline in models of vascular contributions to cognitive impairment and dementia (VCID).

View Article and Find Full Text PDF

Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) is a pleiotropic peptide known to promote many beneficial processes following neural damage and cell death after stroke. Despite PACAP's known neurotrophic and anti-inflammatory properties, it has not realized its translational potential due to a poor pharmacokinetic profile (non-linear PK/PD), and limited Blood-Brain Barrier Penetration (BBB) permeability. We have previously shown that glycosylation of PACAP increases stability and enhances BBB penetration.

View Article and Find Full Text PDF

Sub-anesthetic ketamine treatment has been shown to be an effective therapy for treatment-resistant depression and chronic pain. Our group has previously shown that sub-anesthetic ketamine produces acute anti-parkinsonian, and acute anti-dyskinetic effects in preclinical models of Parkinson's disease (PD). Ketamine is a multifunctional drug and exerts effects through blockade of N-methyl-d-aspartate receptors but also through interaction with the opioid system.

View Article and Find Full Text PDF

Background: Reaching, grasping, and pulling behaviors are studied across species to investigate motor control and problem solving. String pulling is a distinct reaching and grasping behavior that is rapidly learned, requires bimanual coordination, is ethologically grounded, and has been applied across species and disease conditions.

New Method: Here we describe the PANDA system (Pulling And Neural Data Analysis), a hardware and software system that integrates a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for the assessment and training of reaching, grasping, and pulling behaviors and synchronization with neural data.

View Article and Find Full Text PDF

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson's disease (PD) and following the development of l-DOPA-induced dyskinesia (LID). It remains unclear whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) via measuring of tonic levels of striatal DA.

View Article and Find Full Text PDF

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson disease (PD) and following the development of L-DOPA-induced dyskinesia (LID). It remains unclear, whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) with measuring tonic levels of striatal DA.

View Article and Find Full Text PDF
Article Synopsis
  • String-pulling tasks have been used for a long time to study how animals use both hands to solve problems, but manual training and assessment can be labor-intensive and time-consuming.* -
  • The PANDA system is an affordable setup that automates the training and assessment of string-pulling behaviors using various technologies like a rotary encoder and high-speed camera, allowing researchers to gather data more efficiently.* -
  • Testing with both unimplanted and electrode-implanted rats shows the PANDA system can reveal important connections between movement and brain activity, making it valuable for research on motor control and disorders like Parkinson’s and stroke.*
View Article and Find Full Text PDF
Article Synopsis
  • Opioids are commonly used to treat both acute and chronic pain, but they come with serious side effects like constipation, dependence, respiratory issues, and overdose risks, contributing to the opioid crisis.
  • There is a pressing need for non-addictive pain relief options, and oxytocin has emerged as a potential alternative for both pain management and prevention of opioid use disorder.
  • New oxytocin analogues, created by altering its chemical structure for better stability and brain penetration, have demonstrated strong effectiveness in pain relief in mice, indicating promising clinical applications for future research.
View Article and Find Full Text PDF

There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characterized by motor dysfunction. While PD symptoms are well treated with L-DOPA, continuous use can cause L-DOPA-induced dyskinesia (LID). We have previously demonstrated that sub-anesthetic ketamine attenuated LID development in rodents, measured by abnormal involuntary movements (AIMs), and reduced the density of maladaptive striatal dendritic mushroom spines.

View Article and Find Full Text PDF

L-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson's disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub-anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony.

View Article and Find Full Text PDF

Background: Ischemic stroke is an acquired brain injury with gender-dependent outcomes. A persistent obstacle in understanding the sex-specific neuroinflammatory contributions to ischemic brain injury is distinguishing between resident microglia and infiltrating macrophages-both phagocytes-and determining cell population-specific contributions to injury evolution and recovery processes. Our purpose was to identify microglial and macrophage populations regulated by ischemic stroke using morphology analysis and the presence of microglia transmembrane protein 119 (TMEM119).

View Article and Find Full Text PDF

In previous work we evaluated an opioid glycopeptide with mixed μ/δ-opioid receptor agonism that was a congener of leu-enkephalin, MMP-2200. The glycopeptide analogue showed penetration of the blood-brain barrier (BBB) after systemic administration to rats, as well as profound central effects in models of Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesia (LID). In the present study, we tested the glycopeptide BBI-11008 with selective δ-opioid receptor agonism, an analogue of deltorphin, a peptide secreted from the skin of frogs (genus ).

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease. Pharmacotherapy with L-DOPA remains the gold-standard therapy for PD, but is often limited by the development of the common side effect of L-DOPA-induced dyskinesia (LID), which can become debilitating. The only effective treatment for disabling dyskinesia is surgical therapy (neuromodulation or lesioning), therefore effective pharmacological treatment of LID is a critical unmet need.

View Article and Find Full Text PDF

Sleep disturbances co-occur with and precede the onset of motor symptoms in Parkinson's disease (PD). We evaluated sleep fragmentation and thalamocortical sleep spindles in mice expressing the p.G2019S mutation of the leucine-rich repeat kinase 2 () gene, one of the most common genetic forms of PD.

View Article and Find Full Text PDF

Objectives: Dopamine-replacement utilizing L-DOPA is still the mainstay treatment for Parkinson's disease (PD), but often leads to development of L-DOPA-induced dyskinesia (LID), which can be as debilitating as the motor deficits. There is currently no satisfactory pharmacological adjunct therapy. The endogenous opioid peptides enkephalin and dynorphin are important co-transmitters in the direct and indirect striatofugal pathways and have been implicated in genesis and expression of LID.

View Article and Find Full Text PDF

Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved.

View Article and Find Full Text PDF

Dopamine (DA)-replacement therapy utilizing l-DOPA is the gold standard symptomatic treatment for Parkinson's disease (PD). A critical complication of this therapy is the development of l-DOPA-induced dyskinesia (LID). The endogenous opioid peptides, including enkephalins and dynorphin, are co-transmitters of dopaminergic, GABAergic, and glutamatergic transmission in the direct and indirect striatal output pathways disrupted in PD, and alterations in expression levels of these peptides and their precursors have been implicated in LID genesis and expression.

View Article and Find Full Text PDF

Treatment-resistant depression, post-traumatic stress disorder, chronic pain, and L-DOPA-induced dyskinesia in Parkinson's disease are characterized by hypersynchronous neural oscillations. Sub-anesthetic ketamine is effective at treating these conditions, and this may relate to ketamine's capacity to reorganize oscillatory activity throughout the brain. For example, a single ketamine injection increases gamma (∼40 Hz) and high-frequency oscillations (HFOs, 120-160 Hz) in the cortex, hippocampus, and striatum.

View Article and Find Full Text PDF

Vascular endothelial growth factor-B (VEGF-B), when initially discovered, was thought to be an angiogenic factor, due to its intimate sequence homology and receptor binding similarity to the prototype angiogenic factor, vascular endothelial growth factor-A (VEGF-A). Studies demonstrated that VEGF-B, unlike VEGF-A, did not play a significant role in angiogenesis or vascular permeability and has become an active area of interest because of its role as a survival factor in pathological processes in a multitude of systems, including the brain. By characterization of important downstream targets of VEGF-B that regulate different cellular processes in the nervous system and cardiovascular system, it may be possible to develop more effective clinical interventions in diseases such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and ischemic heart disease, which all share mitochondrial dysfunction as part of the disease.

View Article and Find Full Text PDF

Ketamine is an FDA-approved drug with a known safety profile. Low-dose subanesthetic intravenous ketamine infusion treatment has led to long-term reduction of treatment-resistant depression and of chronic pain states. We report on low-dose subanesthetic intravenous ketamine infusion treatment in Parkinson's disease (PD) patients by 5 case studies and show a long-lasting therapeutic benefit to reduce l-DOPA-induced dyskinesia (LID), improve on time, and reduce depression.

View Article and Find Full Text PDF