Three-dimensional cell cultures, such as spheroids and organoids, serve as increasingly important models in fundamental and applied research and start to be used for drug screening purposes. Optical tissue clearing procedures are employed to enhance visualization of fluorescence-stained organs, tissues, and three-dimensional cell cultures. To get a more systematic overview about the effects and applicability of optical tissue clearing on three-dimensional cell cultures, we compared six different clearing/embedding protocols on seven types of spheroid- and chip-based three-dimensional cell cultures of approximately 300 μm in size that were stained with nuclear dyes, immunofluorescence, cell trackers, and cyan fluorescent protein.
View Article and Find Full Text PDFBridging the gap between two-dimensional cell cultures and complex in vivo tissues, three-dimensional cell culture models are of increasing interest in the fields of cell biology and pharmacology. However, present challenges hamper live cell imaging of three-dimensional cell cultures. These include (i) the stabilization of these structures under perfusion conditions, (ii) the recording of many z-planes at high spatio-temporal resolution, (iii) and the data analysis that ranges in complexity from whole specimens to single cells.
View Article and Find Full Text PDFThe barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume-regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined.
View Article and Find Full Text PDFSweating is an important physiological process to regulate body temperature in humans, and various disorders are associated with dysregulated sweat formation. Primary sweat secretion in human eccrine sweat glands involves Ca(2+) -activated Cl(-) channels (CaCC). Recently, members of the TMEM16 family were identified as CaCCs in various secretory epithelia; however, their molecular identity in sweat glands remained elusive.
View Article and Find Full Text PDF