Publications by authors named "Torsten Bringmann"

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters.

View Article and Find Full Text PDF

We propose a novel mechanism for the production of dark matter (DM) from a thermal bath based on the idea that DM particles χ can transform heat bath particles ψ: χψ→χχ. For a small initial abundance of χ, this leads to an exponential growth of the DM number density in close analogy to other familiar exponential growth processes in nature. We demonstrate that this mechanism complements freeze-in and freeze-out production in a generic way, opening new parameter space to explain the observed DM abundance, and we discuss observational prospects for such scenarios.

View Article and Find Full Text PDF

All attempts to directly detect particle dark matter (DM) scattering on nuclei suffer from the partial or total loss of sensitivity for DM masses in the GeV range or below. We derive novel constraints from the inevitable existence of a subdominant, but highly energetic, component of DM generated through collisions with cosmic rays. Subsequent scattering inside conventional DM detectors, as well as neutrino detectors sensitive to nuclear recoils, limits the DM-nucleon scattering cross section to be below 10^{-31}  cm^{2} for both spin-independent and spin-dependent scattering of light DM.

View Article and Find Full Text PDF

Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the cosmic microwave background and other indirect detection probes. For the frequently studied case of s-wave annihilation, these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

View Article and Find Full Text PDF
Status of the scalar singlet dark matter model.

Eur Phys J C Part Fields

August 2017

One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings.

View Article and Find Full Text PDF

Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays.

View Article and Find Full Text PDF

Indirect searches for the cosmological dark matter have become ever more competitive during the past years. Here, we report the first full calculation of leading electroweak corrections to the annihilation rate of supersymmetric neutralino dark matter. We find that these corrections can be huge, partially due to contributions that have been overlooked so far.

View Article and Find Full Text PDF

The Alpha Magnetic Spectrometer experiment onboard the International Space Station has recently provided cosmic ray electron and positron data with unprecedented precision in the range from 0.5 to 350 GeV. The observed rise in the positron fraction at energies above 10 GeV remains unexplained, with proposed solutions ranging from local pulsars to TeV-scale dark matter.

View Article and Find Full Text PDF

The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously.

View Article and Find Full Text PDF

Dark matter (DM) "minispikes" around intermediate mass black holes are sometimes quoted as one of the most promising targets for indirect DM searches. Here, we stress that existing cosmic ray data place severe constraints on the possibility to detect DM annihilation signals from these objects in gamma rays; observational prospects for neutrinos or charged cosmic rays seem even worse. Similar bounds severely constrain the possibility that the excess in the cosmic ray positron or electron flux recently reported by PAMELA/ATIC could be due to a nearby point source like a DM clump or minispike.

View Article and Find Full Text PDF

We consider the gamma-ray spectrum from neutralino dark matter annihilations and show that internal bremsstrahlung of pair final states gives a previously neglected source of photons at energies near the mass of the neutralino. For masses larger than about 1 TeV, and for present day detector resolutions, this results in a characteristic signal that may dominate not only over the continuous spectrum from W fragmentation, but also over the gammagamma and gammaZ line signals which are known to give large rates for heavy neutralinos. Observational prospects thus seem promising.

View Article and Find Full Text PDF

A TeV gamma-ray signal from the direction of the Galactic center (GC) has been detected by the HESS experiment. Here, we investigate whether Kaluza-Klein (KK) dark matter annihilations near the GC can be the explanation. Including the contributions from internal bremsstrahlung as well as subsequent decays of quarks and tau leptons, we find a very flat gamma-ray spectrum which drops abruptly at the dark matter particle mass.

View Article and Find Full Text PDF