Keratoconus is a burden to health systems and patients worldwide. Corneal collagen crosslinking (CXL) treatment has been shown abroad to be cost-effective for treating progressive keratoconus. However, no cost-effectiveness studies have been performed in Brazil.
View Article and Find Full Text PDFSignificance: Anemia is a common problem in preterm neonates, and red blood cell transfusion (RBCT) is used to improve oxygen delivery. However, RBCT is associated with complications, although an increase in cerebral oxygenation has been documented, and no universally accepted biomarker for the need for transfusion (i.e.
View Article and Find Full Text PDFSignificance: Reference cerebral near-infrared spectroscopy (NIRS) data on the pediatric population are scarce, and in most cases, only cerebral oxygen saturation ( ) measured by continuous wave spatially resolved spectroscopy NIRS is reported. Absolute data for baseline optical and hemodynamic parameters are missing.
Aim: We aimed at collecting baseline cerebral optical parameters [absorption coefficient, ; reduced scattering coefficient, ; differential pathlength factor (DPF)] and hemodynamic parameters [oxy-hemoglobin content ( ), deoxyhemoglobin content (HHb), total hemoglobin content (tHB), ] in a large cohort of pediatric patients.
The limits of applicability of scaling relations to generate new simulations of photon migration in scattering media by re-scaling an existing Monte Carlo simulation are investigated both for the continuous wave and the time domain case. We analyzed the convergence properties in various scenarios by numerical methods, trying to derive practical guidelines for the judicious use of this approach, as well as a deeper understanding of the physics behind such relations. In the case of scaling of the absorption coefficient, the convergence is always rigorous both for the forward and inverse problems, relying on the derivatives with respect to the absorption coefficient.
View Article and Find Full Text PDFAim: Current non-invasive near-infrared spectroscopy (NIRS) tissue oximetry suffers from suboptimal reproducibility over probe repositioning, hindering clinical threshold establishment. Time Domain-NIRS (TD-NIRS) offers higher precision but lacks sufficient paediatric data, preventing effective clinical application. We aimed to establish reference ranges for cerebral and mid-upper arm (MUA) tissue haemodynamics in paediatric subjects using TD-NIRS and explore correlations with auxological variables.
View Article and Find Full Text PDFBackground: Sarcopenia is a muscle disorder causing a progressive reduction of muscle mass and strength, but the mechanism of its manifestation is still partially unknown. The three main parameters to assess are: muscle strength, muscle volume or quality and low physical performance. There is not a definitive approach to assess the musculoskeletal condition of frail population and often the available tests to be performed in those clinical bedridden patients is reduced because of physical impairments.
View Article and Find Full Text PDFSignificance: We explore the feasibility of using time-domain (TD) and continuous-wave (CW) functional near-infrared spectroscopy (fNIRS) to monitor brain hemodynamic oscillations during resting-state activity in humans, a phenomenon that is of increasing interest in the scientific and medical community and appears to be crucial to advancing the understanding of both healthy and pathological brain functioning.
Aim: Our general object is to maximize fNIRS sensitivity to brain resting-state oscillations. More specifically, we aim to define comprehensive guidelines for optimizing main operational parameters in fNIRS measurements [average photon count rate, measurement length, sampling frequency, and source-detector distance (SSD)].
[This corrects the article on p. 5994 in vol. 14, PMID: 38021143.
View Article and Find Full Text PDFThe detection of levels of impairment in microvascular oxygen consumption and reactive hyperemia is vital in critical care. However, there are no practical means for a robust and quantitative evaluation. This paper describes a protocol to evaluate these impairments using a hybrid near-infrared diffuse optical device.
View Article and Find Full Text PDFWe present numerical results for the probability density function () and for the mean value of photon maximum penetration depth ‹› in a two-layer diffusive medium. Both time domain and continuous wave regime are considered with several combinations of the optical properties (absorption coefficient, reduced scattering coefficient) of the two layers, and with different geometrical configurations (source detector distance, thickness of the upper layer). Practical considerations on the design of time domain and continuous wave systems are derived.
View Article and Find Full Text PDFBackground: Pediatric keratoconus (pediatric KC) causes progressive deformation of the cornea in children and adolescents, leading to a gradual loss of vision and a need for rehabilitation. However, new treatments may halt the disease and prevent worse outcomes that require penetrating keratoplasty and its associated morbidity and high cost, irreversible loss of vision, and amblyopia. Few systematic reviews focus on keratoconus-and even fewer, on pediatric KC.
View Article and Find Full Text PDFMonte Carlo (MC) is a powerful tool to study photon migration in scattering media, yet quite time-consuming to solve inverse problems. To speed up MC-simulations, scaling relations can be applied to an existing initial MC-simulation to generate a new data-set with different optical properties. We named this approach trajectory-based since it uses the knowledge of the detected photon trajectories of the initial MC-simulation, in opposition to the slower photon-based approach, where a novel MC-simulation is rerun with new optical properties.
View Article and Find Full Text PDFTime-resolved reflectance spectroscopy (TRS), a nondestructive technique, can help the industry to provide high-quality fruit to encourage pear consumption. The absorption coefficient measured by TRS at 670 nm (670) represents a maturity index for pear fruit, with less mature pears high 670 and more mature low 670. The aim of this work was to study the quality characteristics, the sensory profiles and the ethylene production of 'Abate Fetel' pears sorted at harvest in different TRS maturity classes and stored in different atmospheres.
View Article and Find Full Text PDFIn this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations ( frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities.
View Article and Find Full Text PDFAdv Exp Med Biol
November 2023
Long periods of bed rest for elderly population, due to a femur fracture event, can cause a deterioration in the muscular capacity. Therefore, monitoring of the muscle oxidative capacity in this fragile population is necessary to define the muscular oxidative metabolism state before and after a rehabilitation period. The time-domain near-infrared spectroscopy (TD-NIRS) technique enables the absolute values to be calculated for hemodynamic parameters such as oxy- (OHb), deoxy- (HHb), total- (tHb) haemoglobin, and tissue oxygen saturation (SO) of the muscular tissue.
View Article and Find Full Text PDFSignificance: Critically ill newborns are at risk of brain damage from cerebrovascular disturbances. A cerebral hemodynamic monitoring system would have the potential role to guide targeted intervention.
Aim: To obtain, in a population of newborn infants, simultaneous near-infrared spectroscopy (NIRS)-based estimates of cerebral tissue oxygen saturation () and blood flow during variations of carbon dioxide tension () levels within physiologic values up to moderate permissive hypercapnia, and to examine if the derived estimate of metabolic rate of oxygen would stay constant, during the same variations.
Biosensors applied in veterinary medicine serve as a noninvasive method to determine the health status of animals and, indirectly, their level of welfare. Near infrared spectroscopy (NIRS) has been suggested as a technology with this application. This study presents preliminary time domain NIRS measurements of optical properties (absorption coefficient, reduced scattering coefficient, and differential pathlength factor) and hemodynamic parameters (concentration of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and tissue oxygen saturation) of tissue domestic animals, specifically of skeletal muscle (4 dogs and 6 horses) and head (4 dogs and 19 sheep).
View Article and Find Full Text PDFBackground: Motor disorders are one of the world's major scourges, and neuromotor rehabilitation is paramount for prevention and monitoring plans. In this scenario, exercises and motor tasks to be performed by patients are crucial to follow and assess treatments' progression and efficacy. Nowadays, in clinical environments, quantitative assessment of motor cortex activities during task execution is rare, due to the bulkiness of instrumentation and the need for immobility during measurements [e.
View Article and Find Full Text PDFSignificance: Continuous wave near infrared spectroscopy (CW-NIRS) is widely exploited in clinics to estimate skeletal muscles and brain cortex oxygenation. Spatially resolved spectroscopy (SRS) is generally implemented in commercial devices. However, SRS suffers from two main limitations: the assumption on the spectral dependence of the reduced scattering coefficient [] and the modeling of tissue as homogeneous.
View Article and Find Full Text PDFA high power setup for multichannel time-domain (TD) functional near infrared spectroscopy (fNIRS) measurements with high efficiency detection system was developed. It was fully characterized based on international performance assessment protocols for diffuse optics instruments, showing an improvement of the signal-to-noise ratio (SNR) with respect to previous analogue devices, and allowing acquisition of signals with sampling rate up to 20 Hz and source-detector distance up to 5 cm. A resting-state measurement on the motor cortex of a healthy volunteer was performed with an acquisition rate of 20 Hz at a 4 cm source-detector distance.
View Article and Find Full Text PDFThis report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
View Article and Find Full Text PDFSignificance: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison.
Aim: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew.