It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD- mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280.
View Article and Find Full Text PDFThe mitochondrial flavoprotein ferredoxin reductase (FDXR) is required for biogenesis of iron-sulfur clusters and for steroidogenesis. Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, and an increasing number of disorders are associated with disruptions in the synthesis of Fe-S clusters. Our previous studies have demonstrated that hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans and mice, attributed in part to reduced function of the electron transport chain (ETC) as well as elevated production of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe relationship between chronological age (lifespan) and biological age (healthspan) varies amongst individuals. Understanding the normal trajectory and characteristic traits of aging mice throughout their lifespan is important for selecting the most reliable and reproducible measures to test hypotheses. The protocols herein describe assays used for aging studies at The Jackson Laboratory's Mouse Neurobehavioral Phenotyping Facility and include assessments of frailty, cognition, and sensory (hearing, vision, olfaction), motor, and fine motor function that can be used for assessing phenotypes in aged mice across their lifespan as well as provide guidance for setting up and validating these behavioral measures.
View Article and Find Full Text PDFIron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450.
View Article and Find Full Text PDFNMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences.
View Article and Find Full Text PDFAbnormalities of gait and olfaction have been reported in persons with autism spectrum disorders (ASDs), which could reflect involvement of the cerebellum and nodes related to olfaction (e.g., olfactory bulb and ventral temporal olfactory cortex) in neural circuits subserving social, cognitive, and motor domains of psychopathology in these disorders.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
August 2015
The NMDA receptor is a highly regulated glutamate-gated cationic channel receptor that has an important role in the regulation of sociability and cognition. The genetically-inbred Balb/c mouse has altered endogenous tone of NMDA receptor-mediated neurotransmission and is a model of impaired sociability, relevant to Autism Spectrum Disorders (ASDs). Because glycine is an obligatory co-agonist that works cooperatively with glutamate to promote opening of the ion channel, one prominent strategy to promote NMDA receptor-mediated neurotransmission involves inhibition of the glycine type 1 transporter (GlyT1).
View Article and Find Full Text PDF