Stuttering is a disorder of speech production whose origins have been traced to the central nervous system. One of the factors that may underlie stuttering is aberrant neural miscommunication within the speech motor network. It is thus argued that disfluency (any interruption in the forward flow of speech) in adults who stutter (AWS) could be associated with anomalous cortical dynamics.
View Article and Find Full Text PDFAudiomotor integration is a basic form of sensorimotor control for regulating vocal pitch and vocal loudness, but its contribution to general motor control has only been studied minimally. In this paper, auditory feedback for prolonged force control was investigated by comparing manual and oral force generation and testing short-term audiomotor memory for these effectors. Ten healthy volunteers between the ages of 20 and 30 years old were recruited.
View Article and Find Full Text PDFThe authors examined force control in oral and manual effectors as a function of sensory feedback (i.e., visual and auditory).
View Article and Find Full Text PDFIn the typical speech of any language, voicing onset and offset are effortlessly coordinated with articulation as part of the intrinsic coordination of sound production. In this paper, we argue that voicing-articulatory coordination patterns could be shaped by sensory feedback during early speech learning and these patterns persist in mature syllable productions. Our experimental results show that voicing onset is closely associated with the peak velocity and peak amplitude of jaw and upper lip movements for VC syllables in adults.
View Article and Find Full Text PDFSensorimotor integration of auditory feedback for oral and manual force control was compared in 10 healthy participants. Based on the notion that auditory-to-motor integration is a more typical form of feedback for oral articulators given their role in speech and singing, it was predicted that oral force generation would be more accurate and less variable on an auditory-motor task compared to manual force generation. However, finger force production showed similar accuracy and lower variability than lip force production.
View Article and Find Full Text PDFAlthough stuttering is regarded as a speech-specific disorder, there is a growing body of evidence suggesting that subtle abnormalities in the motor planning and execution of non-speech gestures exist in stuttering individuals. We hypothesized that people who stutter (PWS) would differ from fluent controls in their neural responses during motor planning and execution of both speech and non-speech gestures that had auditory targets. Using fMRI with sparse sampling, separate BOLD responses were measured for perception, planning, and fluent production of speech and non-speech vocal tract gestures.
View Article and Find Full Text PDFThe issue of whether speech is supported by the same neural substrates as non-speech vocal tract gestures has been contentious. In this fMRI study we tested whether producing non-speech vocal tract gestures in humans shares the same functional neuroanatomy as non-sense speech syllables. Production of non-speech vocal tract gestures, devoid of phonological content but similar to speech in that they had familiar acoustic and somatosensory targets, was compared to the production of speech syllables without meaning.
View Article and Find Full Text PDFCough and sniff are both spontaneous respiratory behaviors that can be initiated voluntarily in humans. Disturbances of cough may be life threatening, while inability to sniff impairs the sense of smell in neurological patients. Cortical mechanisms of voluntary cough and sniff production have been predicted to exist; however, the localization and function of supramedullary areas responsible for these behaviors are poorly understood.
View Article and Find Full Text PDFPhonation is defined as a laryngeal motor behavior used for speech production, which involves a highly specialized coordination of laryngeal and respiratory neuromuscular control. During speech, brief periods of vocal fold vibration for vowels are interspersed by voiced and unvoiced consonants, glottal stops and glottal fricatives (/h/). It remains unknown whether laryngeal/respiratory coordination of phonation for speech relies on separate neural systems from respiratory control or whether a common system controls both behaviors.
View Article and Find Full Text PDFUnlabelled: A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies, which show that movement coordination depends on intact proprioception.
View Article and Find Full Text PDFThe current study was based on the hypothesis that chronic developmental stuttering in adults involves a deficiency in oral kinesthesia. The authors used a target-accuracy task to compare oral kinesthesia in adults who stutter (n = 17) and in normal speakers (n = 17). During the task, participants were instructed to make accurate jaw-opening movements in visual and nonvisual feedback conditions.
View Article and Find Full Text PDFAnomalies in oral movement control have been identified in stuttering, which suggest this speech disorder involves a sensorimotor deficit. To test whether adults who stutter (AWS) display aberrant proprioceptive function, masseter tendon vibration was used to manipulate jaw proprioception as AWS and normal speakers performed a jaw-opening task. A movement amplitude reduction in the vibration condition was observed in both groups indicating the movements of AWS and controls were influenced in a similar manner by altering masseter proprioception.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2005
Speakers may use laryngeal sensory feedback to adjust vocal fold tension and length before initiating voice. The mechanism for accurately initiating voice at an intended pitch is unknown, given the absence of laryngeal muscle spindles in animals and conflicting findings regarding their existence in humans. Previous reports of rapid changes in voice fundamental frequency following thyroid cartilage displacement suggest that changes in vocal fold length modulate laryngeal muscle contraction in humans.
View Article and Find Full Text PDF