Publications by authors named "Torrente-Rodriguez R"

A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry.

View Article and Find Full Text PDF

This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the -methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme.

View Article and Find Full Text PDF

Detecting overexpression of cancer biomarkers is an excellent tool for diagnostic/prognostic and follow-up of patients with cancer or their response to treatment. This work illustrates the relevance of interrogating the levels of T-cell immunoglobulin and mucin domain 1 (TIM-1) protein as a diagnostic/prognostic biomarker of high-prevalence breast and lung cancers by using an amperometric disposable magnetic microparticles-assisted immunoplatform. The developed method integrates the inherent advantages of carboxylic acid-functionalized magnetic beads (HOOC-MBs) as pre-concentrator support and the amperometric transduction at screen-printed carbon electrodes (SPCEs).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease.

View Article and Find Full Text PDF

The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/HO system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) can be used as antibody carriers in a wide range of immunosensing applications. The conjugation chemistry for preparing antibody-MNP bionanohybrids should assure the nanoparticle's colloidal dispersity, directional conformation and high biofunctionality retention of attached antibodies. In this work, peroxidase (HRP) was selected as model target analyte, and stable antibody-MNP conjugates were prepared using polyaldehyde-dextrans as multivalent linkers, also to prevent nanoparticles agglomeration and steric shielding of non-specific proteins.

View Article and Find Full Text PDF

The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/H O system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new electrochemical bioplatform that can simultaneously detect four different types of DNA and RNA methylations, specifically 5-methylcytosine, 5-hydroxymethylcytosine, N6-methyladenine, and N6-methyladenosine.
  • It utilizes direct competitive immunoassays on magnetic beads and screen-printed carbon electrodes to ensure high sensitivity and selective measurement in under 45 minutes.
  • The platform has been validated for practical use, effectively distinguishing between cancerous cells and healthy tissues, particularly in colorectal cancer patients.
View Article and Find Full Text PDF

A magnetic beads (MB)-involved amperometric immunosensor for the determination of ST2, a member of the IL1 receptor family, is reported in this work. The method utilizes a sandwich immunoassay and disposable screen-printed carbon electrodes (SPCEs). Magnetic immunoconjugates built on the surface of carboxylic acid-microsized magnetic particles (HOOC-MBs) were used to selectively capture ST2.

View Article and Find Full Text PDF

This work describes the preparation of an immunoplatform for the sensitive and selective determination of N6-methyladenosine (m6A). The simple and fast protocol involves for the first time the use of micromagnetic immunoconjugates to establish a direct competitive assay between the m6A target and a biotinylated RNA oligomer bearing a single m6A enzymatically labelled with a commercial conjugate of streptavidin-peroxidase (Strep-HRP) as tracer. The cathodic current change measured in the presence of HO/hydroquinone (HQ) at screen-printed carbon electrodes (SPCEs) upon surface capturing the magnetic bioconjugates is inversely proportional to the m6A target concentration.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic remains a significant public health issue, highlighting the need for quick and effective testing methods to identify infections early, especially in asymptomatic individuals.
  • The SARS-CoV-2 RapidPlex is a new portable and wireless testing platform that can rapidly detect COVID-19-related biomarkers, including viral proteins and antibodies, using advanced laser-engraved graphene technology.
  • Initial tests show that this multiplexed platform is highly sensitive and selective, potentially enabling frequent at-home COVID-19 testing and improving telemedicine diagnosis and monitoring.
View Article and Find Full Text PDF

Understanding and assessing endocrine response to stress is crucial to human performance analysis, stress-related disorder diagnosis, and mental health monitoring. Current approaches for stress monitoring are largely based on questionnaires, which could be very subjective. To avoid stress-inducing blood sampling and to realize continuous, non-invasive, and real-time stress analysis at the molecular levels, we investigate the dynamics of a stress hormone, cortisol, in human sweat using an integrated wireless sensing device.

View Article and Find Full Text PDF

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer.

View Article and Find Full Text PDF

We report a new concept of a chemiluminescence imaging nanozyme immunoassay (CINIA), in which nanozymes are exploited as catalytic tags for simultaneous multiplex detection of cytokines. The CINIA provides a novel and universal nanozyme-labeled multiplex immunoassay strategy for high-throughput detection of relevant biomarkers and further disease diagnosis.

View Article and Find Full Text PDF

This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system.

View Article and Find Full Text PDF

This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs) and amperometric transduction at screen-printed carbon electrodes (SPCEs). The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC)-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp) immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs).

View Article and Find Full Text PDF

A sensitive amperometric immunosensor has been prepared by immobilization of capture antibodies onto gold nanoparticles (AuNPs) grafted on a screen-printed carbon electrode (SPCE) through aryl diazonium salt chemistry using 4-aminothiophenol (AuNPs-S-Phe-SPCE). The immunosensor was designed for the accurate determination of clinically relevant levels of B-type natriuretic peptide (BNP) in human serum samples. The nanostructured electrochemical platform resulted in an ordered layer of AuNPs onto SPCEs which combined the advantages of high conductivity and improved stability of immobilized biomolecules.

View Article and Find Full Text PDF

Currently, electrochemical nucleic acid-based biosensing methodologies involving hybridization assays, specific recognition of RNA/DNA and RNA/RNA duplexes, and amplification systems provide an attractive alternative to conventional quantification strategies for the routine determination of relevant nucleic acids at different settings. A particularly relevant objective in the development of such nucleic acid biosensors is the design of as many as possible affordable, quick, and simple methods while keeping the required sensitivity. With this aim in mind, this work reports, for the first time, a thorough comparison between 11 methodologies that involve different assay formats and labeling strategies for targeting the same DNA.

View Article and Find Full Text PDF

This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA-RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H₂O₂/hydroquinone (HQ) system.

View Article and Find Full Text PDF

A novel electrochemical disposable nucleic acid biosensor for simple, rapid, and specific detection of adulterations with horsemeat is reported in this work. The biosensing platform involves immobilization of a 40-mer RNA probe specific for a characteristic fragment of the mitochondrial DNA D-loop region of horse onto the surface of magnetic microcarriers. In addition, signal amplification was accomplished by using a commercial antibody specific to RNA/DNA duplexes and a bacterial protein conjugated with a horseradish peroxidase homopolymer (ProtA-HRP40).

View Article and Find Full Text PDF

Nanoparticles composed of Prussian Blue, PB, and the cyanometalate structural analogues, CuFe, FeCoFe, and FeCo, are examined as inorganic clusters that mimic the functions of peroxidases. PB acts as a superior catalyst for the oxidation of dopamine to aminochrome by HO. The oxidation of dopamine by HO in the presence of PB is 6-fold faster than in the presence of CuFe.

View Article and Find Full Text PDF

The first electrochemical immunosensor for the determination of fibroblast growth factor receptor 4 (FGFR4) biomarker is reported in this work. The biosensor involves a sandwich configuration with covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic microcarriers (HOOC-MBs) and amperometric detection at disposable carbon screen-printed electrodes (SPCEs). The biosensor exhibits a great analytical performance regarding selectivity for the target protein and a low LOD of 48.

View Article and Find Full Text PDF

Autoantibodies raised against tumor-associated antigens have shown high promise as clinical biomarkers for reliable diagnosis, prognosis, and therapy monitoring of cancer. An electrochemical disposable biosensor for the specific and sensitive determination of p53-specific autoantibodies has been developed for the first time in this work. This biosensor involves the use of magnetic microcarriers (MBs) modified with covalently immobilized HaloTag fusion p53 protein as solid supports for the selective capture of specific autoantibodies.

View Article and Find Full Text PDF

Alpha-lactalbumin (α-LA) is one of the whey proteins in cows' milk that has been identified as allergenic. In this work, we present, for the first time, a very sensitive magnetic beads (MBs)-based immunosensor for the determination of α-LA. A sandwich configuration involving selective capture and horseradish peroxidase-labeled detector antibodies was implemented on carboxylic acid-modified magnetic beads, captured magnetically under the surface of a disposable screen-printed carbon electrode for amperometric detection using the hydroquinone (HQ)/H2O2 system.

View Article and Find Full Text PDF

A sensitive and rapid method for the determination of the clinically relevant biomarker human endoglin (CD105) in serum samples is presented, involving a magneto-actuated immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs). Micro-sized magnetic particles were modified with a specific antibody to selectively capture the target protein which was further sandwiched with a secondary HRP-labeled antibody. The immunocomplexes attached to the magnetic carriers were amperometrically detected at SPCEs using the hydroquinone (HQ)/H2O2/HRP system.

View Article and Find Full Text PDF