The Yellow-Headed Warbler (Teretistris fernandinae) and the Olive-Capped Warbler (Dendroica pityophila) are two bird species that co-exist in Western Cuba. Their spatial distribution has not been studied. This study evaluated their vertical distribution in pine forests during 2007.
View Article and Find Full Text PDFAlthough nicotine is generally considered to be the main compound responsible for addictive properties of tobacco, experimental data indicate that nicotine does not exhibit all the characteristics of other substances of abuse. We recently showed that a pretreatment with mixed irreversible monoamine oxidases inhibitors (MAOIs), such as tranylcypromine, triggers a locomotor response to nicotine in mice and allows maintenance of behavioral sensitization to nicotine in rats. Moreover, we showed by microdialysis in mice that behavioral sensitization induced by compounds belonging to main groups of drugs of abuse, such as amphetamine, cocaine, morphine, or alcohol, was underlain by sensitization of noradrenergic and serotonergic neurons.
View Article and Find Full Text PDFA challenge in drug dependence is to delineate long-term neurochemical modifications induced by drugs of abuse. Repeated d-amphetamine was recently shown to disrupt a mutual regulatory link between noradrenergic and serotonergic neurons, thus inducing long-term increased responses to d-amphetamine and para-chloroamphetamine, respectively. We show here that such a sensitization of noradrenergic and serotonergic neurons also occurs following repeated treatment with cocaine, morphine, or alcohol, three compounds belonging to main groups of addictive substances.
View Article and Find Full Text PDFAlthough amphetamine induces hyperactivity by releasing dopamine (DA), mice that lack alpha1b-adrenoceptors do not release DA in response to amphetamine and do not, therefore, exhibit locomotor supersensitivity to amphetamine. However, such mice reveal hyperlocomotion to p-chloroamphetamine (PCA). Because these alpha1b-adrenoceptor knockout mice have no alterations in the striatal densities of DA D1 or D2 receptors, the basis for any possible dopaminergic contribution to the PCA-induced hyperlocomotion to PCA is unclear.
View Article and Find Full Text PDFThe brain is particularly vulnerable to ischaemia; however, neurons can become tolerant to ischaemic insult. This tolerance has been shown to involve activation of NMDA receptors, but its mechanisms have not yet been fully elucidated. Using a preconditioning protocol, we show that neurons surviving to a transient NMDA exposure become resistant to the glutamatergic agonist.
View Article and Find Full Text PDFCerebral ischaemia is associated with brain damage and inhibition of neuronal protein synthesis. A deficit in neuronal metabolism and altered excitatory amino acid release may both contribute to those phenomena. In the present study, we demonstrate that both NMDA and metabolic impairment by 2-deoxyglucose or inhibitors of mitochondrial respiration inhibit protein synthesis in cortical neurons through the phosphorylation of eukaryotic elongation factor (eEF-2), without any change in phosphorylation of initiation factor eIF-2alpha.
View Article and Find Full Text PDFSeveral aspects of our 25 year adventure in the field of tachykinins will be successively described. They concern: substance P (SP) synthesis and release in the basal ganglia, the identification and pharmacological characterization of central tachykinin NK(1), NK(2) and NK(3) binding sites and their topographical distribution, the description of some new biological tests for corresponding receptors, the identification of tachykinin NK(1) receptor subtypes or conformers sensitive to all endogenous tachykinins (substance P, neurokinin A (NKA), neurokinin B (NKB), neuropeptide gamma (NP gamma) and neuropeptide K (NPK)) and finally, the functional involvement of these receptors and their subtypes in tachykinin-induced regulations of dopamine and acetylcholine release in the striatum.
View Article and Find Full Text PDFThe autoradiographic distribution of tachykinin NK(2) binding sites was determined in the adult rat brain using [(125)I]neurokinin A in the presence of either senktide (NK(3) agonist) and [Pro(9)]substance P (NK(1) agonist) or senktide and SR 140333 (NK(1) antagonist). Indeed, this radioligand labels two subtypes of NK(1) binding sites (which present a high affinity not only for SP but also for neurokinin A, neuropeptide K and neuropeptide gamma) as well as NK(3) binding sites. The distribution of NK(2) binding sites was also compared with those of NK(1) and NK(3) binding sites, these sites being labeled with [(125)I]Bolton and Hunter substance P and [(125)I]Bolton and Hunter eledoisin, respectively.
View Article and Find Full Text PDFGlutamatergic transmission is mediated by ionotropic receptors that directly gate cationic channels and metabotropic receptors that are coupled to second messenger generating systems and to ionic channels via heterotrimeric guanine-nucleotide binding- (G) proteins. This distinction cannot be made for the ionotropic receptor subclass activated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), which has been shown to be physically associated with the alpha-subunit of Gi1 protein and activates this G-protein. Here, we report that, in addition to a Ca2+ influx, AMPA induces the mobilization of Ca2+ from the mitochondrial pool by reversing the mitochondrial Na+/Ca2+ exchanger in mouse neurons in primary culture.
View Article and Find Full Text PDFAttempts were made to label tachykinin NK2 binding sites in the adult rat brain using [125I]neurokinin A (NKA) as ligand in the presence of NK1 and NK3 agonist or antagonist to avoid labelling of NK1 and NK3 binding sites, respectively. A high-affinity, specifically NK2-sensitive, [125I]NKA-binding, temperature-dependent, reversible, sensitive to GTPgammaS and correspondence to a single population of binding sites (K(D) and B(max) values: 2.2 nM and 7.
View Article and Find Full Text PDFBinding experiments performed with [(125)I]-NKA allowed us to demonstrate the presence of "septide-sensitive" specific binding sites on membranes from rat CHO cells transfected with the NK(1) receptor cDNA (CHO-rat-NK1 cells), human astrocytoma U373 MG, or mouse cortical astrocytes, cells which express NK(1) but neither NK(2) nor NK(3) receptors. In all cases, [(125)I]-NKA was specifically bound with high affinity (2 to 5 nM) to a single population of sites. In the three preparations, pharmacological characteristics of [(125)I]-NKA binding sites were notably different from those of classical NK(1) binding sites selectively labelled with [(125)I]-BHSP.
View Article and Find Full Text PDF(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites.
View Article and Find Full Text PDFBinding studies have shown that [125I]NKA is a selective ligand of tachykinin septide-sensitive binding sites from membranes of the rat submaxillary gland. Indeed, this ligand bound with high affinity to a single population of sites. In addition, competition studies indicated that natural tachykinins and tachykinin-related compounds had a similar affinity for these sites than for those labeled with [3H]ALIE-124, a selective ligand of septide-sensitive binding sites.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a potent lipid mediator that is likely involved in diverse functions in the brain. Several recent studies have suggested that astrocytes are important target cells for LPA. In the present study, we have identified the signal transduction pathways activated following LPA stimulation in mouse striatal astrocytes in primary culture.
View Article and Find Full Text PDFThe effects of anandamide and the cannabinoid receptor agonists WIN 55212-2 and CP 55940 on the evoked formation of cyclic AMP were compared in cultured neurons and astrocytes from the cerebral cortex and striatum of mouse embryos. The three compounds inhibited the isoproterenol-induced accumulation of cyclic AMP in neuronal cells, and these responses were blocked by the selective CB1 receptor antagonist SR 141716A. The three agonists were more potent in cortical than striatal neurons.
View Article and Find Full Text PDFIn [3H]myristic acid-prelabeled Chinese hamster ovary cells stably expressing the rat NK1 tachykinin receptor, the selective NK1 agonist [Pro9]substance P ([Pro9]SP) time and concentration dependently stimulated the formation of [3H]phosphatidylethanol in the presence of ethanol. This [Pro9]SP-induced activation of phospholipase D (PLD) was blocked by NK1 receptor antagonists and poorly or not mimicked by NK2 and NK3 agonists, respectively. In confirmation of previous observations, [Pro9]SP also stimulated the hydrolysis of phosphoinositides, the release of arachidonic acid, and the formation of cyclic AMP (cAMP).
View Article and Find Full Text PDFPropionyl-[Met(O2)11]substance P(7-11) [ALIE-124 or propionyl-[Met(O2)11]SP(7-11)] has been designed as a septide-like ligand adequate for tritiation and, therefore, adequate for binding studies. In Chinese hamster ovary (CHO) cells expressing human tachykinin neurokinin (NK)-1 receptors, ALIE-124 displaced [3H][Pro9]substance P (SP) from its binding site at micromolar concentrations. However, ALIE-124 stimulated phosphatidylinositol hydrolysis, as previously shown for septide-like peptides.
View Article and Find Full Text PDFThe rat urinary bladder possesses NK1, NK2 (but not NK3) and 'septide-sensitive' tachykinin receptors coupled to a phospholipase C. The present study performed with SR48968 (10(-6) M) to avoid any interaction of the tested peptides with NK2 receptors, indicates that substance P(6-11) (with a high potency), neurokinin A, neurokinin B and to a lesser extent neuropeptide K (with a lower potency) stimulate [3H]-inositol monophosphate ([3H]-IP1) formation in this tissue by acting on the 'septide-sensitive' tachykinin receptors. Substance P(6-11) had little affinity for NK1 binding sites and stimulated [3H]-IP1 formation with an EC50 value and a maximal amplitude similar to those of septide.
View Article and Find Full Text PDFEur J Pharmacol
January 1997
Binding studies indicated that tachykinin NK3 binding sites in peripheral (ileum) and central (cerebral cortex) tissues of the guinea pig exhibit similar pharmacological properties. They also confirmed that the tachykinin NK3 receptor antagonist (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl) propyl)-4-phenylpiperidin-4-yl)-N-methylacetamide (SR 142801) has a higher affinity for tachykinin NK3 binding sites in the guinea pig than in the rat. SR 142801 exhibited a much lower affinity for tachykinin NK2 and NK1 binding sites.
View Article and Find Full Text PDFThe selective NK2 agonist [Lys5-MeLeu9,Nle10]NKA(4-10) markedly stimulated [3H]inositol monophosphate (PI1) formation in prisms from the rat urinary bladder. This response was blocked by the NK2 antagonist SR 48968. Senktide (NK3 agonist) was inactive.
View Article and Find Full Text PDFThe effects of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA; 10(-3) M), N-methyl-D-aspartate (10(-3) M, in the absence of magnesium or presence of AMPA) and carbachol (10(-3) M) on the release of preloaded [3H]gamma-aminobutyric acid ([3H]GABA) from microdiscs of tissue punched out from sagittal brain slices in striosome- or matrix-enriched areas of the rat striatum have been compared. Although AMPA stimulated similarly the release of [3H]GABA in both striatal compartments, the release of [3H]GABA evoked by either N-methyl-D-aspartate (in the presence of AMPA) or carbachol was more pronounced in matrix- than in striosome-enriched areas. AMPA- and N-methyl-D-aspartate- (in the absence of magnesium) evoked responses were reduced but not abolished in the presence of tetrodotoxin (10(-6) M) in both compartments while the carbachol-evoked release of [3H]GABA was decreased by tetrodotoxin only in the matrix.
View Article and Find Full Text PDFConstrained analogues of phenylalanine have been conceptually designed for analyzing the binding pockets of Phe7 (S7) and Phe8 (S8), two aromatic residues important for the pharmacological properties of SP, i.e., L-tetrahydroisoquinoleic acid, L-diphenylalanine, L-9-fluorenylglycine (Flg), 2-indanylglycine, the diastereomers of L-1-indanylglycine (Ing) and L-1-benz[f]indanylglycine (Bfi), and the Z and E isomers of dehydrophenylalanine (delta ZPhe, delta EPhe).
View Article and Find Full Text PDFDue to the existence of differences in the pharmacological properties of tachykinin NK-1 receptors in the rat and the guinea pig, the autoradiographic distribution of NK-1 binding sites was compared in the brain of the two species using the selective NK-1 ligand 3H-[Pro9]SP. If a good similarity in the distribution of NK-1 binding sites could be seen in basal ganglia, a relative absence of correlation was observed between the estimated optical densities in other brain structures of the two species. For instance, the interpeduncular nucleus, the lateral habenular nucleus and the deep layers of the cerebral cortex were labeled in the guinea pig but not in the rat while the reverse was observed for the columns of the vermis lobules 9-10, the dorsal raphe nucleus, the medial habenular nucleus, the superficial cortical layers and the dorsal hippocampus.
View Article and Find Full Text PDFThe selective agonists of tachykinin NK1, NK2 and NK3 receptors, respectively [Pro9]substance P, [Lys5,MeLeu9,Nle10]neurokinin A-(4-10) and senktide, stimulated phosphoinositide breakdown in slices of the guinea pig ileum. This was also the case with septide which has recently been found to act on a new type of tachykinin receptors in this tissue. The NK1, NK2 and septide-evoked responses were completely antagonized in the combined presence of (+/-)-CP-96,345 and MEN 10,376 which are potent and selective antagonists of tachykinin NK1 and NK2 receptors respectively in the guinea pig ileum.
View Article and Find Full Text PDFThe affinities of a large variety of peptide or nonpeptide tachykinin analogues were determined on membranes from rat and guinea pig brains using the selective NK-1 radioligand 3H-[Pro9]SP. Nonpeptide antagonists clearly revealed a species difference; (+/-)CP-96,345 was more potent in the guinea pig, while RP 67580 was found to be a better competitor of 3H-[Pro9]SP binding to rat brain membranes. This was confirmed on brain slices by autoradiography.
View Article and Find Full Text PDF