Publications by authors named "Torrance C"

Article Synopsis
  • There is a need for more research on neonatal behavior that applies to diverse global populations, but few appropriate assessment measures exist for use from birth.
  • The Neonatal Behavioural Assessment Scale (NBAS) was piloted in rural Gambia and showed great utility, leading to adaptations tailored to the local environment.
  • When comparing NBAS results between infants in the UK and The Gambia, findings indicated fewer state changes in Gambian infants and revealed associations with perinatal factors like pregnancy anxiety, suggesting cultural contexts impact early neurobehavioral development.
View Article and Find Full Text PDF

Genetic screening technologies to identify and validate macromolecular interactions (MMIs) essential for complex pathways remain an important unmet need for systems biology and therapeutics development. Here, we use a library of peptides from diverse prokaryal genomes to screen MMIs promoting the nuclear relocalization of Forkhead Box O3 (FOXO3a), a tumor suppressor more frequently inactivated by post-translational modification than mutation. A hit peptide engages the 14-3-3 family of signal regulators through a phosphorylation-dependent interaction, modulates FOXO3a-mediated transcription, and suppresses cancer cell growth.

View Article and Find Full Text PDF

Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression.

View Article and Find Full Text PDF

Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P.

View Article and Find Full Text PDF

New targeted approaches to ovarian clear cell carcinomas (OCCC) are needed, given the limited treatment options in this disease and the poor response to standard chemotherapy. Using a series of high-throughput cell-based drug screens in OCCC tumor cell models, we have identified a synthetic lethal (SL) interaction between the kinase inhibitor dasatinib and a key driver in OCCC, ARID1A mutation. Imposing ARID1A deficiency upon a variety of human or mouse cells induced dasatinib sensitivity, both in vitro and in vivo, suggesting that this is a robust synthetic lethal interaction.

View Article and Find Full Text PDF

Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models.

View Article and Find Full Text PDF

Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays.

View Article and Find Full Text PDF

Purpose: The lack of secreted biomarkers measurable by noninvasive tests hampers the development of effective targeted therapies against cancer. Our hypothesis is that cetuximab (an anti-EGFR mAb) induces a specific secretome in colorectal cancer cells that could be exploited for biomarker discovery.

Experimental Design: Considering the strong correlation between mutated KRAS and a lack of response to cetuximab therapy, we addressed whether performing secretome-based proteomics on isogenic colorectal cancer cells sharing the KRAS mutations found on patients would yield candidate-secreted biomarkers useful in the clinical setting.

View Article and Find Full Text PDF

Background: The epidermal growth factor receptor family is expressed in breast cancer, and agents targeting this pathway have single agent effects (e.g. traztuzumab).

View Article and Find Full Text PDF

Background: The epidermal growth factor receptor (EGFR) is expressed in ovarian cancer, but agents targeting this pathway have shown little effect as single agents. This may be due to the presence of alternative pathways, particularly activation of the PI3K/Akt/MTOR pathway.

Methods: We have therefore examined the effect of inhibitors of this pathway (ZSTK474 and sirolimus) in combination with the EGFR inhibitors erlotinib and gefitinib in ovarian cancer primary cell cultures.

View Article and Find Full Text PDF

The tumor suppressor, microRNA-34 (miR-34), a transcriptional target of TP53, functions in a positive feedback loop to activate TP53. Although miR-34 can inhibit cancer cells carrying TP53 mutations, this feedback to TP53 may be a prerequisite for full miR-34 function and may restrict its therapeutic application to patients with intact TP53. To investigate the functional relationships between TP53 and miR-34, and that of other TP53-regulated miRNAs including miR-215/192, we have used a panel of isogenic cancer cell lines that differ only with respect to their endogenous TP53 status.

View Article and Find Full Text PDF

Introduction: This study explored the views of nursing lecturers concerning the use of patients in nursing education, particularly in light of the development of additional learning opportunities such as clinical simulation.

Methods: Focus group interviews involving 19 educators from one school of nursing in the United Kingdom were held. An interview schedule was developed by the study team from the findings of a focused literature review of the area.

View Article and Find Full Text PDF

Targeting tumour metabolism is becoming a major new area of pharmaceutical endeavour. Consequently, a systematic search to define whether there are specific energy source dependencies in tumours, and how these might be dictated by upstream driving genetic mutations, is required. The PI3K-AKT-mTOR signalling pathway has a seminal role in regulating diverse cellular processes including cell proliferation and survival, but has also been associated with metabolic dysregulation.

View Article and Find Full Text PDF

The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells.

View Article and Find Full Text PDF

Senescence forms a universal block to tumorigenesis which impacts on all hallmarks of cancer, making it an attractive target for drug discovery. Therefore a strategy must be devised to focus this broad potential into a manageable drug discovery programme. Several issues remain to be addressed including the lack of robust senescence-inducing compounds and causally related biomarkers to measure cellular response.

View Article and Find Full Text PDF

The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients.

View Article and Find Full Text PDF

Virtual screening against a pCDK2/cyclin A crystal structure led to the identification of a potent and novel CDK2 inhibitor, which exhibited an unusual mode of interaction with the kinase binding motif. With the aid of X-ray crystallography and modelling, a medicinal chemistry strategy was implemented to probe the interactions seen in the crystal structure and to establish SAR. A fragment-based approach was also considered but a different, more conventional, binding mode was observed.

View Article and Find Full Text PDF

Objective: To explore self-reported changes in coronary risk factors by patients three to nine months following coronary artery angioplasty.

Design: Descriptive survey.

Subjects: Two hundred and thirty four patients, three to nine months after elective angioplasty.

View Article and Find Full Text PDF

Crystallographic and modelling data, in conjunction with a medicinal chemistry template-hopping approach, led to the identification of a series of novel and potent inhibitors of human cyclin-dependent kinase 2 (CDK2), with selectivity over glycogen synthase kinase-3beta (GSK-3beta). One example had a CDK2 IC(50) of 120 nM and showed selectivity over GSK-3beta of 167-fold.

View Article and Find Full Text PDF

The protein structure guided design of a series of pyrazolo[1,5-a]pyrimidines with high potency for human cyclin-dependent kinase 2 (CDK2) is described. Some examples were shown to inhibit the growth of human colon tumour cells, were equipotent for CDK1 and were selective against GSK-3beta and other kinases.

View Article and Find Full Text PDF

This study explores the role of the lecturer in nursing and midwifery education in the supervision of students' essays, projects and assignments. Three methods were used within the study; semi-structured interviews, questionnaires and focus groups. The results from the semi-structured interviews were used to develop a questionnaire which was distributed to the population of lecturers in nursing and midwifery education (n=285) within Wales.

View Article and Find Full Text PDF