A scheme for constructing models of the 'structure-glass transition temperature of a polymer' is proposed. It involves the representation of the molecular structure of a polymer through the architecture of monomer units represented through a simplified molecular input-line entry system (SMILES) and the fragments of local symmetry (FLS). The statistical quality of such models is quite good: the determination coefficient values for active training set, passive training set, calibration set, and validation set are 0.
View Article and Find Full Text PDFIn this study, models for NOEL (No Observed Effect Level) and NOEC (No Observed Effect Concentration) related to long-term/reproduction toxicity of various organic pesticides are built up, evaluated, and compared with similar models proposed in the literature. The data have been obtained from the EFSA OpenFoodTox database, collecting only data for the Bobwhite quail (. Models have been developed using the CORAL-2023 program, which can be used to develop quantitative structure-property/activity relationships (QSPRs/QSARs) and the Monte Carlo method for the optimization of the model.
View Article and Find Full Text PDFThis study investigates various sorbents for the effective sorption of dissolved organic substances, using tributyl phosphate (TBP) as a model compound. TBP is one of the most commonly used extractants in the nuclear industry. Four different carbon materials with high specific surface areas (2000-3000 m g) were selected for evaluation.
View Article and Find Full Text PDFThe COVID-19 pandemic has prompted the medical systems of many countries to develop effective treatments to combat the high rate of infection and death caused by the disease. Within the array of proteins found in SARS-CoV-2, the 3 chymotrypsin-like protease (3CL) holds significance as it plays a crucial role in cleaving polyprotein peptides into distinct functional nonstructural proteins. Meanwhile, RNA-dependent RNA polymerase (RdRp) takes center stage as the key enzyme tasked with replicating the viral genomic RNA within host cells.
View Article and Find Full Text PDFTypical in silico models for ecotoxicology focus on a few endpoints, but there is a need to increase the diversity of these models. This study proposes models using the NOEC for the harlequin fly () and EC50 for swollen duckweed () for the first time. The data were derived from the EFSA OpenFoodTox database.
View Article and Find Full Text PDFA single nanotube synthesized from a transition metal dichalcogenide (TMDC) exhibits strong exciton resonances and, in addition, can support optical whispering gallery modes. This combination is promising for observing exciton-polaritons without an external cavity. However, traditional energy-momentum-resolved detection methods are unsuitable for this tiny object.
View Article and Find Full Text PDFModels of toxicity to tadpoles have been developed as single parameters based on special descriptors which are sums of correlation weights, molecular features, and experimental conditions. This information is presented by quasi-SMILES. Fragments of local symmetry (FLS) are involved in the development of the model and the use of FLS correlation weights improves their predictive potential.
View Article and Find Full Text PDFSimulation of the physicochemical and biochemical behavior of nanomaterials has its own specifics. However, the main goal of modeling for both traditional substances and nanomaterials is the same. This is an ecologic risk assessment.
View Article and Find Full Text PDFThe ability to emit narrow exciton lines, preferably with a clearly defined polarization, is one of the key conditions for the use of nanostructures based on III-VI monochalcogenides and other layered crystals in quantum technology to create non-classical light. Currently, the main method of their formation is exfoliation followed by strain and defect engineering. A factor limiting the use of epitaxy is the presence of different phases in the grown films.
View Article and Find Full Text PDFThe OECD recognizes that data on a compound's ability to treat eye irritation are essential for the assessment of new compounds on the market. In silico models are frequently used to provide information when experimental data are lacking. Semi-correlations, as they are called, can be useful to build up categorical models for eye irritation.
View Article and Find Full Text PDFData on Henry's law constants make it possible to systematize geochemical conditions affecting atmosphere status and consequently triggering climate changes. The constants of Henry's law are desired for assessing the processes related to atmospheric contaminations caused by pollutants. The most important are those that are capable of long-term movements over long distances.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
October 2023
Most quantitative structure-property/activity relationships (QSPRs/QSARs) techniques involve using different programs separately for generating molecular descriptors and separately for building models based on available descriptors. Here, the capabilities of the CORAL program are evaluated. A user of the program should apply as the basis for models the representation of the molecular structure by means of the simplified molecular input-line entry system (SMILES) as well as experimental data on the endpoint of interest.
View Article and Find Full Text PDFThe assessment of cardiotoxicity is a persistent problem in medicinal chemistry. Quantitative structure-activity relationships (QSAR) are one possible way to build up models for cardiotoxicity. Here, we describe the results obtained with the Monte Carlo technique to develop hybrid optimal descriptors correlated with cardiotoxicity.
View Article and Find Full Text PDFFullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species.
View Article and Find Full Text PDFBeing the major cellular component of highly dynamic tissue, endometrial stromal cells (EnSCs) are exposed to cycles of proliferation upon hormonal stimulation, which might pose risks for the accumulation of mutations and malignization. However, endometrial stromal tumors are rare and uncommon. The present study uncovered defense mechanisms that might underlie the resistance of EnSCs against oncogenic transformation.
View Article and Find Full Text PDFThe minimal inhibitory concentrations (pMIC) are a valuable measure of the biological activity of polypeptides. Numerical data on the pMIC are necessary to systematize knowledge on polypeptides' biochemical behaviour. The model of negative decimal logarithm of pMIC of polypeptides in the form of a mathematical function of a sequence of amino acids is suggested.
View Article and Find Full Text PDFGaN/AlN heterostructures with thicknesses of one monolayer (ML) are currently considered to be the most promising material for creating UVC light-emitting devices. A unique functional property of these atomically thin quantum wells (QWs) is their ability to maintain stable excitons, resulting in a particularly high radiation yield at room temperature. However, the intrinsic properties of these excitons are substantially masked by the inhomogeneous broadening caused, in particular, by fluctuations in the QWs' thicknesses.
View Article and Find Full Text PDFContext: To apply the quantitative relationships "structure-endpoint" approach, the reliability of prediction is necessary but sometimes challenging to achieve. In this work, an attempt is made to accomplish the reliability of forecasts by creating a set of random partitions of data into training and validation sets, followed by constructing random models. A system of random models for a helpful approach should be self-consistent, giving a similar or at least comparable statistical quality of the predictions for models obtained using different splits of available data into training and validation sets.
View Article and Find Full Text PDFAlgorithms of the simulation of the anticancer activity of nanoparticles under different experimental conditions toward cell lines A549 (lung cancer), THP-1 (leukemia), MCF-7 (breast cancer), Caco2 (cervical cancer), and hepG2 (hepatoma) have been developed using the quasi-SMILES approach. This approach is suggested as an efficient tool for the quantitative structure-property-activity relationships (QSPRs/QSARs) analysis of the above nanoparticles. The studied model is built up using the so-called vector of ideality of correlation.
View Article and Find Full Text PDFMutagenicity is one of the most dangerous properties from the point of view of medicine and ecology. Experimental determination of mutagenicity remains a costly process, which makes it attractive to identify new hazardous compounds based on available experimental data through in silico methods or quantitative structure-activity relationships (QSAR). A system for constructing groups of random models is proposed for comparing various molecular features extracted from SMILES and graphs.
View Article and Find Full Text PDFRemoving a drug-like substance that can cause drug-induced liver injury from the drug discovery process is a significant task for medicinal chemistry. In silico models can facilitate this process. Semi-correlation is an approach to building in silico models representing the prediction in the active (1)-inactive (0) format.
View Article and Find Full Text PDFBackground: The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity induced by exposure to ENMs based on metal oxide nanoparticles.
View Article and Find Full Text PDFThe traditional application for quantitative structure-property/activity relationships (QSPRs/QSARs) in the fields of thermodynamics, toxicology or drug design is predicting the impact of molecular features using data on the measurable characteristics of substances. However, it is often necessary to evaluate the influence of various exposure conditions and environmental factors, besides the molecular structure. Different enzyme-driven processes lead to the accumulation of metal ions by the worms.
View Article and Find Full Text PDFIn recent years, single-photon sources (SPSs) based on the emission of a single semiconductor quantum dot (QD) have been actively developed. While the purity and indistinguishability of single photons are already close to ideal values, the high brightness of SPSs remains a challenge. The widely used resonant excitation with cross-polarization filtering usually leads to at least a two-fold reduction in the single-photon counts rate, since single-photon emission is usually unpolarized, or its polarization state is close to that of the exciting laser.
View Article and Find Full Text PDF