Minim Invasive Ther Allied Technol
January 2022
Introduction: Rehearsing endovascular aortic aneurysm repair on patient-specific data is recent within virtual reality simulation and opens up new possibilities for operators to prepare for complex procedures. This study evaluated the feasibility of patient-specific rehearsal (PsR) and assessed operators' appraisal of the VIST-LAB simulator from Mentice.
Material And Methods: CT-data was segmented and uploaded to the simulator, and simulated for 30 elective EVAR patients.
Minim Invasive Ther Allied Technol
December 2017
Background And Objective: Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group.
Material And Methods: Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group.
Introduction: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs.
View Article and Find Full Text PDFThe objective of this study was to make an interactive method for development of a tissue model, based on anatomical information in computed tomography (CT) images, for use in an ultrasound simulator for training or surgical pre-planning. The method consisted of (1) comparison of true ultrasound B-mode images with corresponding ultrasound-like images, and (2) modification of tissue properties to decrease the difference between these images. Ultrasound-like images that reproduced many, but not all the properties of corresponding true ultrasound images were generated.
View Article and Find Full Text PDFMinim Invasive Ther Allied Technol
September 2011
The limited volume covered by intraoperatively acquired CT scans makes the use of navigation systems difficult. Preoperative images cover a larger volume of interest. Hence, reliable registration of high quality preoperative to intraoperative CT will provide the necessary image information required for navigation.
View Article and Find Full Text PDFBackground: Navigation systems are now frequently being used for guiding surgical procedures. Existing neuronavigation systems suffer from the lack of updated images when tissue changes during surgery as well as from user-friendly displays of all essential images for accurate and safe surgery guidance.
Methods: We have developed various new technologies for improved neuronavigation.
Three-dimensional (3D) ultrasound (US) is increasingly being introduced in the clinic, both for diagnostics and image guidance. Although dedicated 3D US probes exist, 3D US can also be acquired with the still frequently used two-dimensional (2D) US probes. Obtaining 3D volumes with 2D US probes is a two-step process.
View Article and Find Full Text PDFBackground: Avoiding damage to blood vessels is often the concern of the neurosurgeon during tumor surgery. Using angiographic image data in neuronavigation may be useful in cases where vascular anatomy is of special interest. Since 2003, we have routinely used 3D ultrasound angiography in tumor surgery, and between January 2003 and May 2005, 62 patients with different tumors have been operated using intraoperative 3D ultrasound angiography in neuronavigation.
View Article and Find Full Text PDFMotion of carotid artery plaques during the cardiac cycle may contribute to plaque disruption and embolism. We have developed a computerized method that objectively analyzes such motion from a sequence of ultrasound (US) radiofrequency (RF) images. A displacement vector map is obtained by 2-D correlation of local areas in consecutive images.
View Article and Find Full Text PDFWe have investigated the 3D navigation accuracy of a frameless ultrasound-based neuronavigation system (SonoWand) for surgical planning and intraoperative image guidance. In addition, we present a detailed description and review of the error sources associated with surgical neuronavigation based on preoperative MRI data and intraoperative ultrasound. A phantom with 27 precisely defined points was scanned with ultrasound by various translation and tilt movements of the ultrasound probe (180 3D scans in total), and the 27 image points in each volume were located using an automatic detection algorithm.
View Article and Find Full Text PDFObjective: In 1995, a project was initiated in Trondheim, Norway, to investigate various possibilities for more frequent use of ultrasound in brain surgery. Since that time, the quality of ultrasonic images has improved considerably through technological adjustment of parameters. The objective of the present study was to explore essential clinical parameters required for the successful use of ultrasonic guidance in brain surgery.
View Article and Find Full Text PDFObjective: Three-dimensional (3-D) ultrasound is an intraoperative imaging modality used in neuronavigation as an alternative to magnetic resonance imaging (MRI). This article summarizes 4 years of clinical experience in the use of intraoperative 3-D ultrasound integrated into neuronavigation for guidance in brain tumor resection.
Methods: Patients were selected for inclusion in the study on the basis of the size and location of their lesion.